The Buzz

The Coming Laser Wars?

Indeed, the first laser weapon to see operational use in a combat zone, the Zeus-Humvee Laser Ordnance Neutralization System, was employed by the U.S. Army to safely detonate roadside bombs and unexploded ordnance in Afghanistan and Iraq. Using the solid-state lasers with a range of up to three hundred meters was considered a safer alternative to manually rigging C4 next to the deadly explosives. You can see a video of the Humvee-mounted laser taking out unexploded ordnance starting at 5:43 in this video.

Another laser that has entered operational use is the unimaginatively named AN/SEQ-3 Laser Weapon System, a thirty-three-kilowatt array of six solid-state lasers that proved so successful when tested onboard USS Ponce that the Navy decided to keep the weapon on the amphibious transport after the trials were complete.

Naval vessels may be an ideal platform for lasers, as they can more easily feed them power via their onboard electrical systems. Furthermore, warships desperately need close-defense weapons to protect against high-speed antiship missiles, such as the BrahMos cruise missile. Naval lasers also have application against swarming drones and high-speed motorboats, and could even be useful for delivering nonlethal warning shots, or disabling specific components of a vessel without sinking it. You can see a laser mounted on the Ponce engaging a motor boat and an aerial drone in this video.

The Navy hopes to develop sixty- to one-hundred-kilowatt lasers with greater range and power for use on its Arleigh Burke–class destroyers and Littoral Combat Ships. A full-power hundred-kilowatt Free Electron Laser is slated for testing in 2018, and might see use on the Navy’s new Zumwalt-class stealth destroyers.

Numerous other laser projects have failed to produce viable systems over the years. One of the most infamous was the billion-dollar Airborne Laser System, a chemically fueled megawatt-class laser mounted on the nose of a Boeing 747 jumbo jet designated the YAL-1. Smaller tracking lasers helped aim the huge weapon, which could fire twenty to forty pulses lasting three to five seconds each. The ABL successfully destroyed two tactical ballistic missiles during tests in 2010, which you can see in this video.

However, the Air Force ultimately scrapped the program because of the ABL’s impractical range limitations: the jumbo jets would have had to enter hostile airspace close to the launch sites to have a chance at downing the missiles in the takeoff phase. However, in 2015 the Air Force announced it was looking into installing longer-range airborne lasers on drones instead, with a prototype slated to begin testing in 2021.

In 2009, the U.S. Air Force also test fired the hundred-kilowatt Advanced Tactical Laser for use in destroying ground targets onboard its legendary AC-130 Spectre gunship, using it to burn out a truck’s engine block. The enormous weapon might also be a useful way to discreetly incinerate strategic material targets, although the potential cloak-and-dagger aspect has raised some ethical concerns. Although the ATL laser was not approved for operational use, the Air Force Special Operations Command still would like to equip its AC-130s with directed energy weapons.

The Air Force is currently focusing on a 150-kilowatt system called the High Energy Liquid Laser Air Defense System, which combines liquid cooling with solid-state laser technology. HELLADS could be employed on a turret mount by a variety of platforms, including fighter jets, Reaper drones and even aerial-refueling tankers. The scalable laser, which could be become operational as soon as 2023, is intended to shoot down incoming air-to-air missiles and drones, although it could also have applications against ground targets and manned aircraft.

The U.S. Army has long been interested in using lasers to shoot down incoming rocket and mortar shells, a mission known as Counter-RAM. Considering how even the best-equipped and -trained soldiers are vulnerable to bombardment from old and widely available Katyusha rockets and portable eighty-two-millimeter mortars, an affordable means to shoot down these projectiles could save lives on exposed forward operating bases, civilian communities and vulnerable fixed installations in the Middle East and Afghanistan.

At the turn of the twenty-first century, the chemically powered Tactical High-Energy Laser, jointly developed with Israel, proved effective in tests at shooting down dozens of Katyusha rockets, artillery shells and mortar rounds. However, the system, which resembled a large searchlight projector, was rejected as being too bulky, expensive and impractical, as each laser battery involved six bus-sized trailers of equipment.