The Buzz

The U.S. Military's Next Super Stealth Weapon Is Not What You Think It Is

The concept behind the Army’s joint Future Vertical Lift program is to engineer a forward-looking, future aircraft able to reach airplane speeds and yet retain and ability to hover and maneuver like a helicopter.

“The aircraft will have an ability to come to a hover in challenging conditions and then, while at a hover, operate at low speeds with maneuvering capability to roll and yaw. We want it to have the handling perspective to make the aircraft able to do what it is able to do,” Tobin added.

The V-280 Valor will also have yet-to-be-determined Degraded Visual Environment technology that allows sensors to see through obscurants such as brown-out conditions, bad weather and other impediments to navigation. Part of this will also include a system called Controlled Flight into Terrain wherein an aircraft has an ability to quickly re-route itself it is approaching a dangerous obstacle such as a mountain, rock wall or building structure.

The new attack variant is expected to use a modernized or next-generation of existing Apache sensors and targeting systems called the Modernized Target Acquisition Designation Sight/Pilot Night Vision Sensor, or MTADS/PVS.

When it comes to sensors and mission equipment, Bell engineers are building a tiltrotor aircraft with what is called “open architecture,” meaning software and hardware able to quickly integrate new technologies as they emerge. The concept is to construct a helicopter that is not intended to operate today but rather advance technology well into the 2030s and beyond. Therefore, it will need to anticipate the weapons, sensors, computer processors and avionics likely to emerge by the 2030s.

This will likely draw upon a semi-autonomous navigation technology built into the aircraft known as “fly-by-wire.”  Bell Helicopter developed the initial algorithms for this technology, which is also now on the V-22 Osprey.

Another survivability technology potentially slated for the aircraft is a system known as Common Infrared Countermeasure, or CIRCM; CIRCM is a lighter weight variant of an existing technology which uses a laser-jammer to throw incoming enemy missiles off course – therefore protecting the aircraft.

"We are looking to the DoD customer to see what they want. Either way we can get that on the airplane,” Tobin explained.

Bell helicopter has now attached the wing to the fuselage of the new tiltrotor aircraft engineered to reach speeds of 280 knots, fly for 800 kilometers on one tank of fuel, hover and maneuver in “high-hot” conditions and function as both a utility and attack helicopter platform.

The intention is to build an advanced, high-tech tiltrotor demonstrator aircraft to take flight in November of 2017 as part of an effort to ultimate build a future aircraft able to begin operations in the 2030s.

“There is one long wing. We attach the middle of the wing to the fuselage - the entire wing is one piece bolted to the fuselage of the airplane. One wing covers both sides. The wing is attached with aircraft grade structural fasteners. There are enough aircraft fasteners to provide sufficient strength to hold the aircraft together,” Tobin said. 

As of January of this year, Bell engineers are 81-percent complete with the aircraft; the wing is attached and the wiring is put in, Tobin said. In the next few months, Bell engineers will begin installation of the gear boxes and the fuel tanks. 

Ground vibration testing is also slated to take place in coming months, to be followed by scale-model wind-tunnel data. 

In addition, the future aircraft is intended to be able to use fuel-efficient engine technology to allow an aircraft to travel at least 800 kilometers on a single tank of fuel. Such an ability will enable the aircraft to operate more easily one a single mission without needing Forward Arming and Refueling Points, or FARPs.

The idea is to engineer and aircraft able to fly from the west coast to Hawaii without needing to refuel.

“FVL is a high priority. We have identified capability gaps. We need technologies and designs that are different than what the current fleet has. It will carry more equipment, perform in high-hot conditions, be more maneuverable within the area of operations and execute missions at longer ranges,” Rich Kretzschmar, project manager for the FVL effort, told Scout Warrior in an interview several months ago.

Requirements for the program are still being refined for the Army-led program, which is aimed at service future aircraft for all four services.

These requirements, now being put into actual demonstrator aircraft built by both Bell and a Boeing-Sikorsky industry teams, include building and aircraft able to reach speeds greater than 230 knots, hover in thin air at 6,000-feet and 95-degrees Fahrenheit, achieve a combat radius of at least 434 kilometers and be configured to include emerging sensors and mission equipment technologies likely to emerge by the 2030s.

“We had set 230 as the speed requirement because we wanted to push the technology.  We wanted people to bring new ideas and new configurations to the table,” Bailey said.  

Pages