Five Futuristic Weapons That Could Change Warfare

Revolutions in waiting?

One possibility is the arming of space orbiters with nuclear or non-nuclear electromagnetic pulse (EMP) weapons. By detonating a satellite-launched EMP weapon at a high altitude, a belligerent could initiate a decapitation attack against an enemy’s electrical grids, satellites, as well as the command, control, communications, computers, intelligence, surveillance and reconnaissance (C4ISR) architecture that are necessary to conduct military operations. Depending on the size of the EMP weapon utilized, the attack could blanket an entire country, or be more surgical, targeting an area of operations. An “assassin’s mace” weapon of this type could theoretically end war before a single shot is fired—at least against a heavily information-reliant adversary such as the U.S. (much less so against, say, the Taliban or Hamas).

EMP weapons fired from lower-altitude platforms or via land-based missile systems (e.g., ICBMs) are vulnerable to intercepts or preemptive strikes. Satellite-mounted EMP weapons, on the other hand, would be beyond the reach of most countries, except those with ground- or air-to-space-based antisatellite capability or space-based weaponized orbiters. Furthermore, the reaction time to a space-based blackout attack would be much shorter, which diminishes the ability of a targeted country to intercept the EMP weapon.

Another technology, interest in which has waxed and waned over the decades, is the use of high-energy space-based lasers (SBL) to target ballistic missiles fired by an enemy during the boost phase (known as “boost-phase intercept,” or BPI). The advantage of BPI is that the attempt to deactivate a ballistic missile occurs during its slowest phase, thus making a successful intercept likelier.

Unlike the theater defense systems currently used for BPI (e.g. Aegis), which must be deployed close to enemy territory, space-based laser platforms can operate at altitudes that, as discussed above, are well beyond the ability of the targeted country to shoot down or deactivate prior to a launch. As more countries and “rogue states” acquire the means to deliver long-range—and possibly nuclear—ballistic missiles, interest in SBL interceptors, and the willingness to fund such costly programs, will likely grow. However, challenges remain in developing chemical megawatt-laser systems for orbiters.

2. Hypersonic Cruise Missiles and ‘Prompt Global Strike’

Had hypersonic cruise missiles existed in the mid-1990s, the U.S. might have rid itself of Al Qaeda leader Osama bin Laden much earlier than it did, and would have accomplished the feat in Afghanistan rather than in Pakistan.

With their ability to accurately deliver warheads over long distances, cruise missiles have had an extraordinary impact on modern warfare. But in an age where minutes can make a difference between defeat and victory, they tend to be too slow. It took eighty minutes for land-attack cruise missiles (LACM) launched from U.S. ships in the Arabian Sea to reach Al Qaeda training camps in Afghanistan in 1998 following the terrorist attacks against U.S. embassies in Kenya and Tanzania. Using hypersonic missiles cruising at speeds of Mach 5+, the same targets would have been reached within as little as 12 minutes, short enough to act on intelligence which had placed the terrorist mastermind at the location.

The desire to be able to strike anywhere, and to do so quickly, has led to the creation of a program known as “prompt global strike,” which the U.S. military initiated in 2001. Efforts have centered on the X-51A hypersonic cruise vehicle (HCV) under a consortium involving the U.S. Air Force, Boeing, the Defense Advanced Research Projects Agency (DARPA), the National Aeronautic and Space Administration, Pratt & Whitney Rocketdyne, and the USAF Research Laboratory’s Propulsion Directorate. Russia, China and India have made strides in developing the technology to achieve similar feats using conventional warheads, leading some defense analysts to warn of a looming global strike arms race.

The U.S. Navy is now reportedly exploring the possibility of developing submarine-launched hypersonic missiles.

As the 1998 example shows, global strike can serve multiple purposes, from decapitation attacks against heads of state, command-and-control systems and other high-value targets to surgical attacks against mobile terrorist groups under short timeframes offered by on-the-ground actionable intelligence. The extraordinary speeds achieved by hypersonic cruise missiles and the terrain-hugging nature of cruise missiles, meanwhile, will pose additional challenges in efforts to intercept them using existing air-defense systems, thus giving them an extra advantage in conventional-warfare scenarios.

1. ‘Sentient’ Unmanned Vehicles

Perhaps the single-most important development in the defense industry in the past decade is the emergence of unmanned vehicles. As the technology evolves, drones, as they are often called, are quickly taking over duties that have traditionally been the remit of human beings. Such has been their rise that some commentators have argued that unmanned aerial vehicles (UAV) could one day render human pilots obsolete.

But today’s drones, from bomb-removal buggies to undersea mini-subs, from ship-based surveillance helicopters to high-altitude assassination platforms, remain dumb and for the most part require a modicum of human intervention. Not only are most platforms piloted remotely by human beings (though with increasing automation), but key mission elements, such as target acquisition and the decision to fire a Hellfire missile at a target, continue to necessitate human supervision.