Can Russia's T-14 Armata Tank Survive A Direct Hit From A U.S. TOW Missile?

Can Russia's T-14 Armata Tank Survive A Direct Hit From A U.S. TOW Missile?

What if our stalwart TOW missile manages to evade all of these defenses? Will it manage to pierce its way into the Armata’s armored heart?

 

Much has been written when it comes to Russia's new supposed super tank, the Armata T-14. To be clear, the T-14 is actually part of something called "The Armata Universal Combat Platform." This consists of the T-14 main battle tank, the T-15 heavy infantry fighting vehicle and the T-16 armored recovery vehicle, among a host of other vehicles.

While early reports concerning the new tank seem to indicate some strong capabilities, how would the new Russian vehicle perform on the battlefield? Would it dominate against the competition or is it simply a paper tiger? 

 

And then we have the obvious question: how would it perform against America's best tank, the popular M1 Abrams? Would the Abrams be able to win a fire fight against the new Russian tank? Or would Moscow hold the advantage? 

Then there is the question of how Moscow's new weapon of war would do against various anti-tank weapons, for example, the TOW missile.

To answer some of these questions, below for your reading pleasure, we have packaged together Dave Majumdar and Sebestian Roblin's latest work on this subject together, published several months ago, for your reading pleasure. Let the debate begin. 

***

With the end of the Cold War and the collapse of the Soviet Union, the spectre of a massive armored Red Army juggernaut smashing its way through the Fulda Gap is long past, but Russia has continued to develop new tanks and armored vehicles. Meanwhile, the United States has continued to rely on upgraded versions of the Cold War–era M1 Abrams and Bradley fighting vehicle.

Russia’s Armata family of armored combat vehicles is a departure from the previous Soviet practice of developing relatively simple, inexpensive but specialized platforms. In fact, the Armata comes in many versions as was envisioned for the U.S. Army’s now-defunct Future Combat System program. There is a tank, infantry-fighting vehicle, a self-propelled artillery piece and a host of other variants. The most prominent of these is the T-14 main battle tank Armata variant.

The T-14 is a complete departure from previous Soviet and Russian tanks, all of which take their design cues from the lessons the Red Army learned fighting the Wehrmacht during the Second World War. Soviet tanks were relatively simple, extremely rugged and produced in mass quantities. Soviet tanks placed less emphasis on matching Western tanks one for one and more on overwhelming the adversary using sheer numbers—crew survivability was a secondary concern. Every Russian tank, including the T-90, followed this basic design philosophy.

The T-14, from all appearances, seems to have abandoned the traditional Russian way of designing armored vehicles. Instead of a relatively simple design, the T-14 is fitted with a number of very advanced features that have never been implemented in an operational tank anywhere else in the world. Moreover, for the first time, the Russian military seems to have placed a premium on crew survivability. That could be a result of Russia’s push to professionalize its military and possibly due to the country’s declining demographics.

What immediately sets the Armata apart from any other operational tank is that it has an unmanned turret. The advantage is that the crew compartment is physically separated from the ammunition. Further, the tank is equipped with passive laminated armor combined with reactive armor and an active protection system. The Afghanit active protection system allegedly includes millimeter-wave radars to detect, track and intercept incoming rounds. Taken in aggregate, the Armata offers much-better crew survivability than any previous Russian or Soviet tank—assuming all of these features work.

While the unmanned turret offers much better crew survivability, it also has some drawbacks. The crew has to entirely rely on their sensors for situational awareness and targeting. That’s not a huge drawback normally, but it could be a problem if the tank is hit and its sensors or electronics are knocked out. That might mean even a glancing blow to the turret results in a mission kill where the tank is drivable, but unable to shoot back.

Versus the M1A2 SEP v2 or the follow-on M1A3, it’s an open question as to which is the better tank. The Abrams is a proven, reliable design that is still being upgraded. The forthcoming M1A3 will be somewhat lighter and more mobile. The U.S. Army also plans to replace the 120mm M256 smoothbore gun with a lighter version.

New guided projectiles might also enable the Abrams to hit targets as far away as 12,000m. But Russian tanks are also equipped to fire anti-tank guided missiles via their main gun—it’s really a question of who sees the other first. Much of how the Armata will perform on the battlefield will depend on how much progress Russia has made in developing the tank’s sensors and data-networks. The tank that sees the enemy first almost always wins the fight.

The Armata is a new design, and it will inevitably have teething problems as it matures. Further, there is the question of whether the T-14 can be produced in numbers—that’s very much a factor, given the state of Russia’s economy. Ultimately, it could prove to be a formidable weapon.

***

Time to consider matchmaking Russia’s favorite new Armata tank with America’s ex-favorite antitank missile, the TOW!

Yes, you heard that last part right, the TOW has been sold all over the world—but America’s starry eyes of antitank love have wandered to greener pastures. Ever since the United States military began deploying the top-attack Javelin missile in the mid-1990s, it’s been handing them out like alcopops at a bachelorette party to its frontline troops—nearly every infantry squad has a few it can call its own.

On the other hand, new kids aren’t allowed to the Javelin party. Ukraine has been shown the door; Syrian rebels need not apply.

That’s why it’s TOW missiles that are making their way into the hands of Syrian FSA rebels from a not-very-mysterious benefactor. The TOW still has another thing going for it: it has roughly 50 percent greater range than the basic Javelin—though a new version of the Javelin will soon change that. For now, however, you can sit back and enjoy the fresh air on a mountain top with your TOW missile, drinking in the panoramic view while you shoot those videos you keep putting up on YouTube.

So how does the aging TOW fare against the T-14 Armata, the mysterious new Russian super-tank, rumored to secretly be a Transformer robot with powers of flight? Let’s compare the TOW’s characteristics with the Armata’s defensive capabilities and see what sparks they throw together.

The BGM-71 TOW (Tube-launched, Optically-tracked, Wire-guided) missile is America's venerable long-range antitank missile, first deployed in 1970 and now available in many flavors: wireless, tandem charge, top-attack, bunker buster. There’s something to cater to every taste. Let’s dispense with the first generation types (sorry ITOW!), and focus on two current models: the TOW-2A and TOW-2B.

The TOW-2A still uses the weapon’s signature wire-guidance system. When a TOW missile shoots out from the launch tube using a booster rocket, a wire connecting the missile to the launcher unspools behind it, allowing the launch unit to send commands up the wire while the missile soars ahead. The TOW uses a Semi-Automatic Command Line-Of-Sight (SACLOS) system—which is to say, the firer guides the missile by keeping an optical scope trained on the target, and the system automatically corrects the missile’s course inflight. The TOW-2A can hit targets up to 3,750 meters away—though it will take its time getting there. Flying at an average of 180 meters a second, that adds up to twenty-one seconds to hit a target at maximum range, giving an alert tank crew a chance to take evasive action…if they notice it coming.

The wire-guidance system has the advantage of being immune to most forms of jamming. However, it requires the firer to remain in place, aiming the missile for its entire flight time until it hits the target. Countermeasures that make the target hard to see—such as plain old-fashioned smoke—can mess up the firer’s aim.

Once it hits the tank, the TOW-2A detonates a High-Explosive Anti-Tank (HEAT) warhead, also known as a shaped charge or chemical penetrator. Conventional projectiles rely on kinetic energy—a combination of speed and mass—to pierce armor. But kinetic penetrators require heavy guns that produce tremendous recoil, and lose power over longer distances. A HEAT shell instead blasts a stream of metal particles at high velocity upon impact; larger HEAT shells can penetrate more armor, but the speed of the shell or missile doesn’t affect penetration. A long barrel and heavy frame to absorb recoil is unnecessary, and that’s why most missiles use HEAT warheads. The TOW-2A’s six-inch shaped charge is supposedly capable of piercing 900 millimeters of Rolled Homogeneous Armor (RHA) equivalent.

Starting in the 1980s, however, designers started making tanks that were especially resistant to HEAT warheads. Western tanks employed Chobham composite armor. Soviet antitank missiles had as much effect on new Abrams and Challenger tanks in the Gulf War as spitballs on a hippo. Russian designs, on the other hand, employed Explosive Reactive Armor (ERA)— bricks of explosives that detonate at a missile’s approach, tripping the HEAT warhead’s jet before it gets close enough to the tank. ERA is a bit more finicky than Chobham armor, but cheaper and lighter weight.