America's Secret Plan to Track Down Russian and Chinese Submarines

July 21, 2017 Topic: Security Blog Brand: The Buzz Tags: MilitaryTechnologyWorldU.S.SubmarinesDARPA

America's Secret Plan to Track Down Russian and Chinese Submarines

Thanks to DARPA. 

Instead of using passive sonar technology which listens for acoustic “pings” picked up from undersea enemy movement, MOCCA plans to use active sonar technology able to proactively send active acoustic pings forward and analyze the return signal.

The U.S. Defense Advanced Research Projects Agency (DARPA) has awarded BAE Systems a $4.6 million contract for its Mobile Offboard Clandestine Communications and Approach (MOCCA) program. The MOCCA program’s goal is to enable submarines to detect other submerged vessels at greater distances, while minimizing the risk of counter-detection.

“Advances in maritime technology are critical to the Department of Defense and an area where the U.S. military can continue to strengthen its advantage,” Geoff Edelson, director of Maritime Systems and Technology at BAE Systems, said in a written statement.  

The Defense Advanced Research Project Agency and BAE-Systems have begun a high-tech project to engineer undersea drones that can use active sonar to find enemy submarines and network back to a host submarine in real-time.

The project, called Mobile Offboard Clandestine Communications and Approach (MOCCA) program, brings the prospect of a major breakthrough in undersea communications technology – allowing submarines to detect enemies from a much safer standoff distance. These days, in the dangerous and complication realm of undersea warfare, most undersea drones typically gather intelligence before returning to download data at the mother ship; this emerging technology would enable near real-time undersea connectivity between drones and larger submarines.

Instead of using passive sonar technology which listens for acoustic “pings” picked up from undersea enemy movement, MOCCA plans to use active sonar technology able to proactively send active acoustic pings forward and analyze the return signal to discern the counters, speed, shape and distance of an enemy submarine – all while enabling the host submarine retain its stealth properties.

“With the resurgence of near-peer competitors and an increasing number of submarines, MOCCA technology will provide Navy submariners with a vital asymmetrical advantage against a rapidly proliferating undersea threat.” Geoff Edelson, director of Maritime Systems and Technology at BAE Systems, said in a written statement.

DARPA’s Broad Agency Announcement for the program articulates several substantial technical challenges with the MOCCA effort, such as the difficulty of engineering a small drone with active sensor systems.

“A small UUV (Unmanned Undersea Vehicle) is disadvantaged as a host for an active sonar projector. The volume available for the projector is highly constrained which makes high-output transducer materials a necessity,” DARPA’s BAA to industry states.

DARPA also says the small drone also have energy challenges, explaining that “the projector must be as energy-efficient as possible.”

The Drone’s acoustic signal needs to be focused and directed, without scattering to produce “reverberation and signal loss.”

While details of what specific technologies might enable undersea signals are not available for security reasons, DARPA’s BAA does make clear that securing the communications link is also of utmost importance.

To meet the MOCCA program’s ambitious Phase 1 goals, BAE Systems’ researchers will design efficient sonar capabilities to maximize detection range and improve target identification and tracking, BAE developers say. 

“An ideal link would have a low probability of intercept and of exploitation and provide high link reliability,” DARPA states.

Using satellite integrated telemetry, some underwater drones can transmit information back to boats in near real time; this provides a substantial tactical advantage because smaller drones are less detectable to enemy sonar and therefore able to access areas that are more difficult for larger submarines to penetrate. Such a technology allows for closer-in reconnaissance missions when it comes to operating in enemy territory, close to the shoreline, or overcoming the anti-access/area-denial challenges posed by potential adversaries.

Such scenarios, envisioned for the not-too-distant future, provide the conceptual foundation of the Navy’s emerging drone strategy. The idea is to capitalize upon the fast increasing speed of computer processing and rapid improvements in the development of autonomy-increasing algorithms; this will allow unmanned systems to quickly operate with an improved level of autonomy, function together as part of an integrated network, and more quickly perform a wider range of functions without needing every individual task controlled by humans.

Groups of underwater drones will soon simultaneously use sonar and different sensors to identify and destroy enemy submarines and surface ships, search for mines, collect oceanographic data and conduct reconnaissance missions – all while a single human performs command and control functions aboard a Navy ship or submarine, senior service officials explained.

The approach is designed as a mission multiplier to increase efficiency and perform a wider range of functions much more quickly. Armed with a small fleet of underwater drones, a submarine or destroyer will be able to perform higher-priority missions while allowing unmanned systems to quickly gather and transmit combat-relevant tactical and strategic information.

This first appeared in Scout Warrior here

Image: Creative Commons.