The F-35 Is a $1.4 Trillion Dollar National Disaster

April 1, 2017 Topic: Security Blog Brand: The Buzz Tags: TechnologyMilitaryWorldF-35U.S. MilitaryStealth

The F-35 Is a $1.4 Trillion Dollar National Disaster

What can we do about it? 

The ALIS data must go wherever a squadron goes. Crews must transfer the data from the squadron’s main ALIS computers at the home station to the deployed ALIS SOU before the aircraft are permitted to fly missions. This process took three days during the Mountain Home deployment. This was faster than in earlier demonstrations, but Lockheed Martin provided eight extra ALIS administrators for the exercise. It is unclear if the contractor or the Air Force will include this level of support in future deployments. When the squadron redeployed back to Edwards at the end of the exercise, it took administrators four days to transfer all the data back to the main ALIS computer. Delays of this kind will limit the F-35’s ability to rapidly deploy in times of crisis. Even if the jets can be positioned in enough time to respond to a crisis, problems like lengthy uploading times could keep them on the ground when they are needed in the sky. An aircraft immobilized on the ground is a target, not an asset.

Another time-consuming process involves adding new aircraft to each ALIS standard operating unit. Every time an F-35 is moved from one base to another where ALIS is already up, it must be inducted into that system. It takes 24 hours. Thus, when an F-35 deploys to a new base, an entire day is lost as the data is processed. And only one plane at a time can upload. If an entire squadron, typically 12 aircraft, needed to be inducted, the entire process would take nearly two weeks, forcing a commander to slowly roll out his F-35 aircraft into combat.

There have also been delays with the program’s critical mission software. As mentioned before, the F-35 requires expansive mission data loads (MDLs) for the aircraft’s sensors and mission systems to function properly. MDLs, in part, include information about enemy and friendly radar systems. They send the search parameters for the jet’s sensors to allow them to properly identify threats. These need to be updated to include the latest information. They are also specific for each major geographic region.

The MDLs are all programmed at the U.S. Reprogramming Lab at Florida’s Eglin AFB and then sent out to all the relevant squadrons. The lab is one of the most crucial components in the entire F-35 program. According to DOT&E, the lab must be capable of “rapidly creating, testing and optimizing MDLs, and verifying their functionality under stressing conditions representative of real-world scenarios, to ensure the proper functioning of F-35 mission systems and the aircraft’s operational effectiveness in both combat and the IOT&E of the F-35 with Block 3F.”

Officials identified critical deficiencies with management of this lab in 2012. Taxpayers spent $45 million between 2013 and 2016 to address these concerns. Despite the warnings and the extra funds, development of the lab continues to be plagued with mismanagement that prevents “efficient creating, testing, and optimization of the MDLs for operational aircraft” in the current basic combat configurations. The lab needs to be upgraded to support each software version being used on the F-35. The lab is currently configured to support the block 2B and 3i software versions. The first full combat capable software version for the F-35 will be Block 3F. The lab requires significant changes to support this version, which will be necessary for combat testing and, more importantly, full combat readiness.

The lab is so far behind that some of the necessary equipment hasn’t even been purchased yet. For example, this facility is also dependent on the specialized radio frequency generators mentioned earlier to re-create the kind of signals a potential adversary might use against the F-35. The lab will use these to test the MDLs before they are sent out to be loaded on the fleet aircraft to ensure the jet’s sensors will identify them properly.

In the rush to a pretend initial operational capability, the Air Force and the Marines have actually created an aircraft completely unready to face the enemy.

F-35 Reliability Problems:

Even if an F-35 squadron can get to where it is needed, when it is needed, what good is it if it can’t then fly on missions? This is one of the most enduring problems of the F-35 program. The fleet has had a notoriously poor reliability track record: it failed to achieve many of its interim reliability goals, and continued to do so through 2016. As the program creeps towards the all-important operational test phase, there are real concerns the aircraft will not be able to fly often enough to meet the testing schedule. There are also concerns about how often the jets will be able to fly when called up for combat service.


“Availability” measures how often aircraft are on hand to perform at least one assigned mission. The services strive to maintain an 80 percent availability rate for their aircraft for sustained combat operations, as most aircraft achieved, for example, in Operation Desert Storm in the Persian Gulf in 1991. This is the same rate the testing fleet needs in order to meet the IOT&E schedules. So far, the F-35 program has not even been able to meet its interim goal of 60 percent availability.

The fleet averaged a 52 percent availability rate for FY 2016. This is an improvement over recent years, but DOT&E cautions “the growth was neither steady nor continuous.” And the growth curve is behind schedule. The aircraft that will be used for operational testing need to be kitted out with specialized instruments to measure performance. There are currently 17 of these jets stationed at California’s Edwards Air Force Base. The average availability rate of this test fleet was 48 percent in the first nine months of 2016.


There are several factors dragging down the availability rate for the F-35 fleet. Many of the aircraft have had to be sent back to the depots for major overhauls, a consequence of the program’s high concurrency level. For instance, 15 F-35As needed to be sent back to correct the manufacturing defect where the foam insulation inside the jet’s fuel tanks deteriorated casting debris into the fuel. Other overhauls were necessary because there were basic design faults including major structural components that did not meet lifespan requirements, while still others were “driven by the continuing improvement of the design of combat capabilities that were known to be lacking when the aircraft were first built.”

Even when the aircraft aren’t away for major overhauls, they aren’t flying very much. Of the aircraft that are available, they can be broken down into two categories: the Mission Capable and Fully Mission Capable. Mission Capable aircraft are those that are ready to conduct at least one type of mission, even if it’s only a training mission; Fully Mission Capable aircraft are those ready to conduct all missions the aircraft is declared to be capable of. The latter is the real measure of a combat-ready aircraft.

The availability rates of both the Mission Capable and Fully Mission Capable F-35s went down in the last year. The Mission Capable rate for the fleet was 62 percent in FY 2016, down from 65 percent in FY 2015[DG3] . The Fully Mission Capable rate was only 29 percent, compared to 46 percent the year before. The Gilmore report cites failures of major combat systems like the Distributed Aperture System, Electronic Warfare System, Electro-Optical Targeting System, and the radar as the highest drivers of the drop in capability rates. Significantly, the systems said to give the F-35 its unique combat capabilities are the very systems that keep the F-35 on the ground—demonstrating no capability whatsoever.

On average, the Air Force’s F-35s could only fly two sorties a week in 2016 according to the recently released annual operational cost chart. (By comparison, the F-16 averaged nearly three sorties per week and the A-10 fleet averaged nearly four.) And it requires a great deal of maintenance to achieve even that. While there have been public statements in official releases saying how easy it is for maintenance personnel to work on the jets, the DOT&E report paints a different picture.

Problems with the supply chain are already forcing maintainers to cannibalize planes; taking parts from one plane to install on another in order to ensure at least one will fly. Cannibalization has the effect of increasing the total time to make the repairs, as it adds the extra step of stripping the part from the donor jet rather than just taking a new or repaired part out of the box. It also requires the part to be installed twice: first in the repaired jet and then in the cannibalized jet. For FY 2016, maintainers had to cannibalize parts for nearly 1 in 10 sorties flown, which is short of the program’s unimpressive goal of no more than 8 cannibalization actions in every 100 sorties.