The F-35 Program Continues to Stumble

October 3, 2017 Topic: Security Blog Brand: The Buzz Tags: F-35A-10U.S. Air ForceMilitaryTechnologyTrump

The F-35 Program Continues to Stumble

There are still a plethora of problems.

One of the more significant ways the Pentagon is hiding the true costs of the F-35 is that it has put off until Block 4 the development and delivery of many key capabilities that should have been delivered in Block 3. Currently planned, but not included in the official cost estimate of the F-35—or even as a complete separate acquisition program—is a four-part Block 4 upgrade costing at least $3 billion, according to the Government Accountability Office. In addition, DOT&E reports that there are “17 documented failures to meet specification requirements for which the program acknowledges and intends to seek contract specification changes in order to close out SDD [System Development and Demonstration].” That means there are 17 key combat capabilities the F-35 program can’t yet deliver and that the program office is attempting to give Lockheed Martin a pass on delivery until the later in the advanced development process.

Although no one has publicly stated which 17 combat capabilities won’t be included now, they were all functions the F-35 was supposed to have, and for which the American people are paying full price. So we will be paying more money in the future to upgrade F-35s purchased now so they can perform the functions we already paid for.

The $119.6 million unit cost for the F-35A in 2016 is a gross underestimate, and the additional costs will not be fully known for years. Those who pretend the cost in 2016 is somewhere below $100 million each are simply deceiving the public.

Combat Effectiveness at Risk

In every first-rate air force, turning out superior fighter pilots requires them to fly at least 30 hours a month to hone and improve their combat skills. Here lies the single largest cause of the F-35’s lack of combat effectiveness: because of the plane’s unprecedented complexity and the corresponding reliability and maintenance burdens, pilots simply cannot fly them often enough to get enough real flying hours to develop the combat skills they need.

Pilot skills atrophy if the pilots can’t get enough flight hours. Even with superior technology, less skilled pilots could be outmatched in the sky by highly trained pilots flying less sophisticated aircraft. Inadequate flight time also creates a dangerous safety situation that threatens pilots’ lives in training. The Marine Corps suffered 9 serious aircraft crashes in the past year, with 14 people killed. The Corps’ top aviator recently said the spike in crashes is mainly due to pilots not having enough flying hours.

This trend will worsen with the F-35. Given its inherent complexity and the associated cost, it is highly unlikely the F-35 will ever be able to fly often enough to turn out winning pilots.

Can the F-35 Be Where It’s Needed, When It’s Needed?

Even if, and this is a big IF, the F-35 could perform in combat the way Lockheed Martin says it can (to say nothing of how a competent replacement for the F-16, A-10, and F-18 should perform), the program is still next to worthless if the jets can’t be where they need to be when they are needed.

Several factors contribute to the difficulty in deploying an F-35 squadron in a timely fashion. One is the F-35’s mission planning system, a part of the ALIS network. After the details of a combat mission (such as targets, predicted enemy radar locations, the routes to be flown, and weapon load) are worked out, the data needs to be programed into the aircraft. This information is loaded onto cartridges which are then plugged into the jet. F-35 pilots program these cartridges on the Offboard Mission Support (OMS) system.

The problem, DOT&E found, was that pilots consistently rated the system used to support mission planning “cumbersome, unusable, and inadequate for operational use.” They report that the time it takes to build the mission plan files is so long that it disrupts the planning cycle for missions with more than just one aircraft. This means that when several F-35s receive a mission, they can’t go through all the pre-flight processes fast enough to launch on time if anything but a huge amount of planning time is allotted.

The Air Force conducted a major test of the F-35 program when it conducted a deployment demonstration from Edwards Air Force Base in California to Mountain Home Air Force Base in Idaho in February and March 2016. This was the service’s first attempt to use an updated version of the ALIS (the ground-based computer system that is supposed to diagnose mechanical problems, order and track replacement parts, and guide maintenance crews through repairs).

Whenever a squadron deploys, it must establish an ALIS hub wherever the F-35 is deployed. Crews set up an ALIS Standard Operating Unit (SOU), which consists of several cases of computer equipment. Technicians will use these to set up a small mainframe which must then be plugged into the world-wide ALIS network. It took several days for the crews to get ALIS working on the local base network. After extensive troubleshooting, IT personnel figured out they had to change several settings on Internet Explorer so ALIS users could log into the system. This included lowering security settings, which DOT&E noted with commendable understatement was “an action that may not be compatible with required cybersecurity and network protection standards.”

The ALIS data must go wherever a squadron goes. Crews must transfer the data from the squadron’s main ALIS computers at the home station to the deployed ALIS SOU before the aircraft are permitted to fly missions. This process took three days during the Mountain Home deployment. This was faster than in earlier demonstrations, but Lockheed Martin provided eight extra ALIS administrators for the exercise. It is unclear if the contractor or the Air Force will include this level of support in future deployments. When the squadron redeployed back to Edwards at the end of the exercise, it took administrators four days to transfer all the data back to the main ALIS computer. Delays of this kind will limit the F-35’s ability to rapidly deploy in times of crisis. Even if the jets can be positioned in enough time to respond to a crisis, problems like lengthy uploading times could keep them on the ground when they are needed in the sky. An aircraft immobilized on the ground is a target, not an asset.

Another time-consuming process involves adding new aircraft to each ALIS standard operating unit. Every time an F-35 is moved from one base to another where ALIS is already up, it must be inducted into that system. It takes 24 hours. Thus, when an F-35 deploys to a new base, an entire day is lost as the data is processed. And only one plane at a time can upload. If an entire squadron, typically 12 aircraft, needed to be inducted, the entire process would take nearly two weeks, forcing a commander to slowly roll out his F-35 aircraft into combat.

There have also been delays with the program’s critical mission software. As mentioned before, the F-35 requires expansive mission data loads (MDLs) for the aircraft’s sensors and mission systems to function properly. MDLs, in part, include information about enemy and friendly radar systems. They send the search parameters for the jet’s sensors to allow them to properly identify threats. These need to be updated to include the latest information. They are also specific for each major geographic region.

The MDLs are all programmed at the U.S. Reprogramming Lab at Florida’s Eglin AFB and then sent out to all the relevant squadrons. The lab is one of the most crucial components in the entire F-35 program. According to DOT&E, the lab must be capable of “rapidly creating, testing and optimizing MDLs, and verifying their functionality under stressing conditions representative of real-world scenarios, to ensure the proper functioning of F-35 mission systems and the aircraft’s operational effectiveness in both combat and the IOT&E of the F-35 with Block 3F.”

Officials identified critical deficiencies with management of this lab in 2012. Taxpayers spent $45 million between 2013 and 2016 to address these concerns. Despite the warnings and the extra funds, development of the lab continues to be plagued with mismanagement that prevents “efficient creating, testing, and optimization of the MDLs for operational aircraft” in the current basic combat configurations. The lab needs to be upgraded to support each software version being used on the F-35. The lab is currently configured to support the block 2B and 3i software versions. The first full combat capable software version for the F-35 will be Block 3F. The lab requires significant changes to support this version, which will be necessary for combat testing and, more importantly, full combat readiness.

The lab is so far behind that some of the necessary equipment hasn’t even been purchased yet. For example, this facility is also dependent on the specialized radio frequency generators mentioned earlier to re-create the kind of signals a potential adversary might use against the F-35. The lab will use these to test the MDLs before they are sent out to be loaded on the fleet aircraft to ensure the jet’s sensors will identify them properly.