The U.S. Navy Wants to Reach Out and Sink Someone

January 14, 2020 Topic: Security Blog Brand: The Buzz Tags: U.S. NavyNavyMilitaryTechnologyHistoryRussiaChina

The U.S. Navy Wants to Reach Out and Sink Someone

The Navy is accelerating integration of a new, much more powerful radar system intended to find and destroy enemy drones, missiles and aircraft at farther ranges by combining ballistic missile defense with standard air and missile defense -- all as part of an emerging service-wide strategic approach to increase Naval attack power and better network maritime warfighting platforms.

Mills explained that all variants of the SPY-6 are architected on a common software baseline, thus enabling the possibility for further integration on additional Navy platforms. In fact, different variants of the radar have been scaled for a range of different mission sets on various platforms. Alongside the integration of AN/SPY 6 v1 for Flight III Destroyers, Raytheon and the Navy are now integrating several additional variants for carriers and amphibs, specifically tailored to their respective mission scopes. The SPY 6 v2, for instance, is a smaller rotating radar and a SPY 6 v3 has three fixed radar faces on the deck houses. These variants will go on both Nimitz class and Ford-class carriers. The v3 has nine radar module assemblies. The v3 has three fixed spaces looking out at a different angle, covering 360-degrees with 120-degree panels each. Finally, there is a SPY 6 v4 which will be integrated onto existing DDG 51 IIA destroyers during a mid-life upgrade. The v4 has 24 Radar Module Assemblies, compared to the v1, which has 37.

The Navy’s DMO strategic approach calls for a common systems architecture intended to better accommodate upgrades and new variants as SPY6 technology continues to progress. The ONR and Naval Postgraduate School papers on DMO explain that future research will focus on what’s called “Adaptive Force Packages,” meaning developers will tailor innovations, systems engineering and emerging technologies to specific combat applications such as anti-submarine warfare and surface warfare.

All of these SPY6 radars, which bring a sensitivity expanded beyond legacy or existing radars, have their power, cooling and scope adjusted to fit the specific missions of various platforms. Destroyers, for instance, will need to conduct Ballistic Missile Defense to protect carriers in Carrier Strike Groups. Amphibs and Carriers, which are receiving a different SPY 6 variant, have different mission needs.

The new SPY 6 radar uses a chemical compound semi-conductor technology called Gallium Nitride which can amplify high-power signals at microwave frequencies; it enables better detection of objects at greater distances when compared with existing commonly used materials such as Gallium Arsenide, Mills explained.

Mills explained that Gallium Nitride is designed to be extremely efficient and use a powerful aperture in a smaller size to fit on a DDG 51 destroyer with reduced weight and reduced power consumption. Gallium Nitride has a much higher breakdown voltage so it is capable of much higher power densities, Mills said.

The AN/SPY-6 is being engineered to be easily repairable with replaceable parts, fewer circuit boards and cheaper components than previous radars; the SPY-6 is also designed to rely heavily on software innovations, something which reduces the need for different spare parts.

However, special technological adaptations have been underway to ensure the new, larger radar system can be sufficiently cooled and powered up with enough electricity. Regarding electricity, the Navy previously awarded a competitive contract to DRS technologies to build power conditioning modules – systems designed to turn the ship’s on-board electrical power into 1000-volt DC power for the AMDR. The DDG Flight III’s are also being built with the same Rolls Royce power turbine engineered for the DDG 1000, yet designed with some special fuel-efficiency enhancements.

The Navy has been developing a new 300-ton AC cooling plant slated to replace the existing 200-ton AC plant. Navy SPY-6 documents describing the on-board technology as Common Array Cooling systems, specifically highlight a needed integration between the cooling units and the ship’s array subsystems, antenna interface and digital beamforming. All of this is naturally, according to Navy technical papers, connected to a power distribution system, digital signal processing and radar control processing. The SPY-6 operates a four-faced array to achieve 360-degree functionality, with 144 T/R (transmit-receive) modules per Radar Module Assembly. Before becoming operational, the new cooling plant is being engineered to tolerate vibration, noise and shocks, such as those generated by an underwater explosion.

Osborn previously served at the Pentagon as a Highly Qualified Expert with the Office of the Assistant Secretary of the Army - Acquisition, Logistics& Technology. Osborn has also worked as an anchor and on-air military specialist at national TV networks. He has appeared as a guest military expert on Fox News, MSNBC, The Military Channel and The History Channel. He also has a Masters Degree in Comparative Literature from Columbia University.