The Nazi Were Geniuses With Landmines (It Still Causes Problems Today)

Wikimedia Commons
October 18, 2020 Topic: History Region: Europe Blog Brand: The Reboot Tags: World War IINazi GermanyLandminesStealthMinesweeping

The Nazi Were Geniuses With Landmines (It Still Causes Problems Today)

The Germans attempted to make their mines difficult to detect. They buried them as much as 24 inches below the surface so that they would explode only after a number of vehicles had compacted the earth sufficiently to set off the fuse.

German land mines were insidious weapons—killing or maiming thousands of Allied soldiers and civilians. In one incident toward the end of 1944, American soldiers came across nonmetal mines in Lorraine, France. In a single minefield they found 12,000 mines made out of Bakelite or wood, which made them impossible to locate with metal detectors. By 1945, the U.S. Army in Europe recorded that mines were responsible for 2.5 percent of combat fatalities and for 20.7 percent of tank losses.

German commanders considered the land mine a very effective defensive weapon and so went to great lengths to make extensive use of it. Minefields were used chiefly to cover defensive operations and retreats. In a static situation the Germans regarded minefields as an element of frontline positions, laid out according to an overall mine plan developed in close conjunction with fields of fire. German doctrine for minefield location was modified during the war so that, instead of laying dense minefields in front of the main line of resistance, as had been the practice, mines were dispersed.

Mapping the Mines

German engineers believed it necessary to survey the location of minefields and individual mines within the fields. They were instructed to choose reference points for minefields that could be identified easily, such as near a railroad grade crossing, at road intersections, or at the edge of a village.

In some instances, however, the Germans were forced to use guide wires and auxiliary fixed points. A type of auxiliary fixed point that proved practicable was the center of an equilateral triangle with sides 15 to 25 feet long. The corner points and the fixed point itself would be marked by stakes, rails, concrete or steel girders about three feet in length and connected with barbed wire. Such a fixed point could be reestablished easily after heavy shelling was received. Fixed points could also be reference points found on a map. Distances were measured in meters and azimuth readings were taken by compass.

The Germans believed it was advantageous to lay a continuous series of reference points 600 to 900 feet apart, through a division sector. These reference points would be used to determine the locations of ditches, trenches, obstacles, and pillboxes as well as minefields.

Minefield Patterns

To assure the greatest possible effect, minefields normally were laid out in patterns, but there were exceptions to this practice in sectors where the Germans did not intend to undertake offensive actions. There, they dispersed the mines irregularly in the areas between defensive positions.

The main fields or belts of antitank mines were laid in a uniform pattern with a sprinkling of antipersonnel mines at the forward edge of the field. Both types of mines might be fitted with antilifting or antihandling devices intended to cause the mine to detonate if an attempt was made to remove it, and some of the antipersonnel mines would also have trip wires attached.

In turn, a number of antitank mines would be laid at the forward edge of an antipersonnel minefield to prevent armored vehicles from detonating the main belt of antipersonnel mines. In addition, the forward edge of minefields were often sown with explosive charges placed in wooden boxes fitted with pressure fuses. These acted as both antitank and antipersonnel mines and discouraged the use of metal detectors to locate the mines.

Forward of most fields, and particularly in front of clear lanes, mines might be found widely spaced or scattered at random in unmarked groups. Mines also were laid in lines running out at right angles from the forward edge of the minefield in order to damage vehicles moving along the field in search of lanes.

Mine Lines

Pressure-type antitank and antipersonnel mines were laid in lines. For measuring distances, a mine-measuring wire 24 meters long was used, with meter increments marked off and with five-inch-diameter rings on the ends of the wire. This measuring wire, in addition to measuring the distance between fixed points, served to lay out right angles by staking out a triangle with sides of six, eight, and 10 meters, respectively. Spaces between mines were determined by reference to the marks on the wire and four rings on one end used to set rows.

The density of a minefield depended on the interval set between mines and the number of rows used. Clear lanes were left open for patrols to transit, and passage lanes for assault troops. New lanes were set periodically and old ones closed.

Mine belts were normally laid in sections of 80 by 105 feet. The sections usually were staggered, and, for extensive mine belts, combined in units of three or four to form forward or reverse arrowheads, or echelons.

Defending the Approach and the Retreat

The Germans emphasized that minefields were to be covered by fire, although during a hasty withdrawal they often did not follow this principle. It was common for a minefield to have a listening post with two men at the rear edge; about 70 or 80 yards to the rear a covering party of four or five men was placed with one or two light machine guns.

When the Germans were conducting a hasty withdrawal, they usually laid a large number of small nuisance mines and minefields. These fields contained many different types of mines, which often were unmarked and showed evidence of being hurriedly laid. The lack of pattern uniformity made detection and clearing laborious and dangerous.

Mines were also laid close to or on roadways, on airfields and railways, and along telegraph and telephone lines. Hard-surfaced roads were usually avoided in the case of hastily laid mines, but khaki-painted antitank mines sometimes were placed on the surface at dips in the road in the hope that drivers would be unable to avoid them. The Germans also placed mines along the shoulders of a road opposite narrow places where drivers might have to swing wide to pass and at the entrances to defiles where they had to pull off the road to wait for vehicles moving in the opposite direction. Other places usually sown with antitank mines were turnouts, sharp bends, and well-worn wheel ruts.

Placement Ingenuity

The Germans attempted to make their mines difficult to detect. They buried them as much as 24 inches below the surface so that they would explode only after a number of vehicles had compacted the earth sufficiently to set off the fuse. They placed explosives in wooden boxes to prevent discovery by mine detectors, and they made tire prints in the soil over the mine by drawing a detached axle and wheels over the mine.

They showed considerable ingenuity in setting antipersonnel mines randomly on the line of a possible enemy advance. Road demolition areas were sown with antipersonnel mines, and kilometer marker posts at points where drivers would have to dismount to read directions were similarly treated. Mines also were placed in ditches, often close to the tripwire peg of another mine.

Nuisance fields were closely spaced, occasionally so close as to cause sympathetic detonation. This was particularly possible when mines were laid with their pressure plates almost flush with the surface of the ground and only lightly covered with earth.

The Germans also set dummy minefields. These took various forms. In some cases a trip wire was laid to give the appearance of a minefield perimeter wire, with the usual lanes and the ground disturbed at regular intervals. Scrap metal, often dispersed with real mines, was placed in shallow holes to cause a reaction by mine detectors. Dummy mines were often connected to live booby traps.

Marking Mines

The Germans stressed the marking of minefields and attempted to mark them in such a manner that they could not be recognized by the enemy but could easily be found by their own troops. Initially, the methods of marking minefields were not uniform. The front edge of a field was often unmarked. Because of many accidents caused by friendly minefields, the Germans issued orders making proper marking mandatory.

Typical examples of markings included the placing of a single knee-high wire, use of cattle fencing, placing of empty mine crates, and signs. Marking stakes were also used to indicate minefields. The stakes were flat on one side for a length of about eight inches, with the flat surface painted red and the letter M (Minen) in black. Such stakes were used only on the friendly edges of minefields.

Signs were painted in red and white on boards or pieces of sheet metal and fastened to two stakes. The edges of minefields were indicated with signs marked with horizontal stripes. Edges of lanes through the fields were indicated by vertically divided signs, with the white portion on the side of the lane (safe) and the red portion on the side of the minefield (danger). The reverse sides of the signs, the sides toward the enemy, were painted olive drab. If red paint was not available, the Germans substituted black and white signs. These were painted with the words Minen (mines), Gasse or Gassen (mine lanes), and Entimint (an area cleared of mines). Minefields were indicated by vertical lettering, dummy minefields with slanted letters. This distinction, however, was supposed to be made known only to German engineers because it was feared that other troops, if taken prisoner, might divulge the locations of dummy minefields.