Why Planting More Trees Cannot Solve Our Climate Crisis
The fact is that there aren’t enough trees to offset society’s carbon emissions – and there never will be.
One morning in 2009, I sat on a creaky bus winding its way up a mountainside in central Costa Rica, light-headed from diesel fumes as I clutched my many suitcases. They contained thousands of test tubes and sample vials, a toothbrush, a waterproof notebook and two changes of clothes.
I was on my way to La Selva Biological Station, where I was to spend several months studying the wet, lowland rainforest’s response to increasingly common droughts. On either side of the narrow highway, trees bled into the mist like watercolours into paper, giving the impression of an infinite primeval forest bathed in clouds.
As I gazed out of the window at the imposing scenery, I wondered how I could ever hope to understand a landscape so complex. I knew that thousands of researchers across the world were grappling with the same questions, trying to understand the fate of tropical forests in a rapidly changing world.
Our society asks so much of these fragile ecosystems, which control freshwater availability for millions of people and are home to two thirds of the planet’s terrestrial biodiversity. And increasingly, we have placed a new demand on these forests – to save us from human-caused climate change.
Plants absorb CO₂ from the atmosphere, transforming it into leaves, wood and roots. This everyday miracle has spurred hopes that plants – particularly fast growing tropical trees – can act as a natural brake on climate change, capturing much of the CO₂ emitted by fossil fuel burning. Across the world, governments, companies and conservation charities have pledged to conserve or plant massive numbers of trees.
This story is a collaboration between Conversation Insights and Apple News editors
The Insights team generates long-form journalism and is working with academics from different backgrounds who have been engaged in projects to tackle societal and scientific challenges.
But the fact is that there aren’t enough trees to offset society’s carbon emissions – and there never will be. I recently conducted a review of the available scientific literature to assess how much carbon forests could feasibly absorb. If we absolutely maximised the amount of vegetation all land on Earth could hold, we’d sequester enough carbon to offset about ten years of greenhouse gas emissions at current rates. After that, there could be no further increase in carbon capture.
Yet the fate of our species is inextricably linked to the survival of forests and the biodiversity they contain. By rushing to plant millions of trees for carbon capture, could we be inadvertently damaging the very forest properties that make them so vital to our wellbeing? To answer this question, we need to consider not only how plants absorb CO₂, but also how they provide the sturdy green foundations for ecosystems on land.
Read more: Climate scientists: concept of net zero is a dangerous trap
How plants fight climate change
Plants convert CO₂ gas into simple sugars in a process known as photosynthesis. These sugars are then used to build the plants’ living bodies. If the captured carbon ends up in wood, it can be locked away from the atmosphere for many decades. As plants die, their tissues undergo decay and are incorporated into the soil.
While this process naturally releases CO₂ through the respiration (or breathing) of microbes that break down dead organisms, some fraction of plant carbon can remain underground for decades or even centuries. Together, land plants and soils hold about 2,500 gigatonnes of carbon – about three times more than is held in the atmosphere.
Because plants (especially trees) are such excellent natural storehouses for carbon, it makes sense that increasing the abundance of plants across the world could draw down atmospheric CO₂ concentrations.
Plants need four basic ingredients to grow: light, CO₂, water and nutrients (like nitrogen and phosphorus, the same elements present in plant fertiliser). Thousands of scientists across the world study how plant growth varies in relation to these four ingredients, in order to predict how vegetation will respond to climate change.
This is a surprisingly challenging task, given that humans are simultaneously modifying so many aspects of the natural environment by heating the globe, altering rainfall patterns, chopping large tracts of forest into tiny fragments and introducing alien species where they don’t belong. There are also over 350,000 species of flowering plants on land and each one responds to environmental challenges in unique ways.
Due to the complicated ways in which humans are altering the planet, there is a lot of scientific debate about the precise quantity of carbon that plants can absorb from the atmosphere. But researchers are in unanimous agreement that land ecosystems have a finite capacity to take up carbon.
If we ensure trees have enough water to drink, forests will grow tall and lush, creating shady canopies that starve smaller trees of light. If we increase the concentration of CO₂ in the air, plants will eagerly absorb it – until they can no longer extract enough fertiliser from the soil to meet their needs. Just like a baker making a cake, plants require CO₂, nitrogen and phosphorus in particular ratios, following a specific recipe for life.
In recognition of these fundamental constraints, scientists estimate that the earth’s land ecosystems can hold enough additional vegetation to absorb between 40 and 100 gigatonnes of carbon from the atmosphere. Once this additional growth is achieved (a process which will take a number of decades), there is no capacity for additional carbon storage on land.
But our society is currently pouring CO₂ into the atmosphere at a rate of ten gigatonnes of carbon a year. Natural processes will struggle to keep pace with the deluge of greenhouse gases generated by the global economy. For example, I calculated that a single passenger on a round trip flight from Melbourne to New York City will emit roughly twice as much carbon (1600 kg C) as is contained in an oak tree half a meter in diameter (750 kg C).
Peril and promise
Despite all these well recognised physical constraints on plant growth, there is a proliferating number of large scale efforts to increase vegetation cover to mitigate the climate emergency – a so called “nature-based” climate solution. The vast majority of these efforts focus on protecting or expanding forests, as trees contain many times more biomass than shrubs or grasses and therefore represent greater carbon capture potential.
Yet fundamental misunderstandings about carbon capture by land ecosystems can have devastating consequences, resulting in losses of biodiversity and an increase in CO₂ concentrations. This seems like a paradox – how can planting trees negatively impact the environment?
The answer lies in the subtle complexities of carbon capture in natural ecosystems. To avoid environmental damage, we must refrain from establishing forests where they naturally don’t belong, avoid “perverse incentives” to cut down existing forest in order to plant new trees, and consider how seedlings planted today might fare over the next several decades.
Before undertaking any expansion of forest habitat, we must ensure that trees are planted in the right place because not all ecosystems on land can or should support trees. Planting trees in ecosystems that are normally dominated by other types of vegetation often fails to result in long term carbon sequestration.
Read more: Peat bogs: restoring them could slow climate change – and revive a forgotten world
One particularly illustrative example comes from Scottish peatlands – vast swathes of land where the low-lying vegetation (mostly mosses and grasses) grows in constantly soggy, moist ground. Because decomposition is very slow in the acidic and waterlogged soils, dead plants accumulate over very long periods of time, creating peat. It’s not just the vegetation that is preserved: peat bogs also mummify so-called “bog bodies” – the nearly intact remains of men and women who died millennia ago. In fact, UK peatlands contain 20 times more carbon than found in the nation’s forests.
But in the late 20th century, some Scottish bogs were drained for tree planting. Drying the soils allowed tree seedlings to establish, but also caused the decay of the peat to speed up. Ecologist Nina Friggens and her colleagues at the University of Exeter estimated that the decomposition of drying peat released more carbon than the growing trees could absorb. Clearly, peatlands can best safeguard the climate when they are left to their own devices.
The same is true of grasslands and savannahs, where fires are a natural part of the landscape and often burn trees that are planted where they don’t belong. This principle also applies to Arctic tundras, where the native vegetation is covered by snow throughout the winter, reflecting light and heat back to space. Planting tall, dark-leaved trees in these areas can increase absorption of heat energy, and lead to local warming.
But even planting trees in forest habitats can lead to negative environmental outcomes. From the perspective of both carbon sequestration and biodiversity, all forests are not equal – naturally established forests contain more species of plants and animals than plantation forests. They often hold more carbon, too. But policies aimed at promoting tree planting can unintentionally incentivise deforestation of well established natural habitats.