The Age of Strike Carrier Is Over

The Age of Strike Carrier Is Over

Aircraft carriers have a huge role in future wars, but the retooling of their aircraft and their operational concepts must begin now.

by LT X

Never in its history has American naval aviation confronted a state-of-the-art, integrated air defense system and provided effective, strategic ordinance. Hypothetically, at times during the Cold War, American strike-configured carriers might have done so, but an era of fiber-optically interlinked, multi-frequency, phased array air defense systems totally precludes such operations. Moreover, naval aviation assets lacked the range to strike strategic targets deep in mainland China and central Russia, limited to around 1,000nm inland.

Modern Aircraft Carrier Utilization in Great Power War: 

The utility of the STRIKE carrier in great power conflict is over. More accurately, as the previous section highlighted, it never really existed. American strike carriers throughout their history proved incapable of gaining and maintaining access to heavily defended areas and this trend will only grow more severe. China’s Great Wall of air defense on the northern Taiwan Strait will again preclude American carriers from gaining access to strategic areas in mainland China. Russia’s high-value areas are already well defended. China’s continued investment in air defense systems will cause this problem to continue to distribute throughout Asia. Further, a series of anti-access systems fielded by China, but also increasingly by Russia, are pushing U.S. carrier task forces out of range of present naval aircraft.

American planners are hoping, almost as a matter of faith, that an increase in the range of carrier-based aircraft would provide for continued access. This approach is wrong-headed.  First, what land targets would such aircraft service? Perhaps Hainan Dao, or some rocks in the South or East China Sea, hardly a war-winning strategic strike. Second, how will these aircraft gain access in order to deliver the strike? American naval aircraft are too obsolete to deal with any but the most lightly defended of modern targets, and the F-35 will not markedly change this equation.

So let’s give up? Call it a day? Beef up Air Force appropriations? Not even close. American naval air power is the critical capability in the U.S. arsenal in the Western Pacific and the North Atlantic. Instead, force planners should recall why the U.S. built aircraft carriers in the first place, and where they last played a critical strategic role: in anti-surface warfare and fleet air defense. American carrier air power in the Pacific War hinged not on great strikes against the home islands, but rather on massing striking power against Japanese naval surface forces, Japanese air forces, and by protecting the fleet during operations and major landings. This is where naval aviation must again put its efforts.

Air wings at present are much better configured for low-risk ground attack than for operations against other navies. Air operations in the Pacific War required mass, exercising Halsey’s axiom that carrier air power increased at the exponent of the number of carriers engaged. Those operations encompassed large sorties, with hundreds of aircraft in major fleet actions. Over the past twenty-five years these skills have been lost. American carrier forces now exercise in single or dual carrier configurations. In Halsey and Spruance’s era, their fleets swelled into double digit large flattops, with myriad small deck escort carriers providing combat air patrols, anti-submarine forces, and landing support. Additionally, that war featured raids of hundreds of naval aircraft against enemy surface formations. Critics will claim that such mass is no longer required in the precision munitions era but such claims ignore that defense systems have also improved dramatically, making saturation the only sure way to put sophisticated, modern air defense ships out of action. To be clear, this author is not advocating a wholesale return to Nimitz’s fast carrier task force. However, the tactics, techniques, procedures, and training of American carrier air forces are out of touch with a modern, sea-control war, and a single U.S. CVN must be able to generate the mass and firepower necessary to fight in a modern, contested sea environment.

American naval aviation forces have not experienced platforms with the anti-air capabilities of ships as capable as the current generation of Chinese Navy Luyang hulls. U.S. tactics presently involving two or four aircraft sorties are totally inadequate for destroying an AEGIS-equivalent ship. To overwhelm a Chinese, or even an aging Russian surface formation, will likely require dozens of anti-ship cruise missiles. A single carrier must contain the capability to put such a ship (ideally many such ships) out of action, quickly. However, at present such a task requires the bulk of a modern air wing to generate the volume of fire required. This would likely also require a total re-arming of carrier magazines with a focus on sea control weapons and systems lest a CVN run itself out of anti-ship missiles in a few early engagements.

Moreover, distributed lethality requires a distribution of air power. Without fast-moving defensive counter-air formations operating with small surface action groups, American light forces will find themselves extremely vulnerable to attack. Modern surface combatant anti-air weapons range remains about 100nm. Modern air-launched anti-ship cruise missiles regularly feature twice that range and increasingly much greater. Without defensive counter-air formations attached to light surface forces, enemy aircraft will use the haven of range to mass firepower, overwhelming a formation’s air defenses while maintaining relative safety over the horizon. Allowing distributed light forces some measure of defensive counter-air capability will allow those formations to break up air attacks, ideally precluding saturation of U.S. platforms, offset electronic emissions away from the formation to make enemy targeting of the group more difficult, and therefore dramatically increase survivability.

The United States certainly has the capability to maintain the primacy of its carriers, especially in the maritime-dominated Western Pacific. The U.S. must use its large-decks to maximum potential. This includes American large-deck amphibious shipping, in the form of LHDs and LHAs. Such ships’ amphibious capability will likely not add much to the initial phases of great power war when sea control and air superiority are contested. Importantly, small carriers proved highly useful in both Atlantic and Pacific theaters of the Second World War, providing long-range air defenses for convoys and robust anti-submarine capability outside of the range of land-based air power. In the 1960s, the U.S. began using Essex-class carries in an anti-submarine configuration (CVS vice the strike carrier CVA). In fact, USS Intrepid, a CVS-configured carrier, conducted strikes into Northern Vietnam off Yankee Station, when it became apparent that PRC submarines did not pose a serious threat to the American Carrier Operating Areas (CVOAs). Likewise, the British prioritized antisubmarine work and limited air defense capability in their Invincible-class light carriers which featured heavily in the Falkland Islands War. AmericanWasp– and America-class ships, loaded with F-35s, SH-60s, and MV-22s, can provide the same – an air defense, anti-surface, and anti-submarine screen. Operating in the vicinity of a Surface Action Group Operating Area (SAGOA), the large-decks could provide on-station defensive counter-air, visually identify unknown contacts, and augment the ASW aircraft from a SAG to increase the group’s submarine localization and anti-surface strike capacity.

American naval forces are only a fraction of the way to recognizing the capabilities the MV-22 provides. At present, the U.S. Navy only tested MV-22 Osprey tiltrotor aircraft in a Carrier Onboard Delivery (COD) capacity, the CMV-22. However, the aircraft retains substantial potential in anti-submarine warfare and airborne early warning, among other uses. U.S. Navy carrier task forces until the early 2000s incorporated the S-3 Viking aircraft, a high-subsonic anti-submarine jet. These aircraft retired in the early 2000s due to lack of fleet interest in anti-submarine warfare. In the heavily contested North Atlantic or Western Pacific, against foes with modern undersea forces, such a capability once again is required. The MV-22 would expand this capability. While slower, it provides potential marked improvements in range, low-altitude handling, on station time, and sensor payload. Such aircraft would provide a step-increase in surface-force ASW capability, potentially loaded with dipping sonars, sonobouys, and a large number of Mk 54 torpedos. Further, mounting a high-performance radar on such an aircraft would allow some measure of airborne early warning to small surface units. Combined with point-to-point data links, these aircraft could provide over-the-horizon situational awareness while limiting surface force’s radar transmissions. This would complete the capability of the light-carrier air group described above and substantially increase the lethality of the small satellite surface groups orbiting the aviation ship. Additionally, due to their vertical takeoff and landing capability, the MV-22 could potentially lily pad off smaller ships, particularly the huge flight decks ofIndependence-class Littoral Combat Ships (LCS) increasing their time aloft forward. While heat management proved frustrating early in the aircraft’s tenure, this issue has been fixed with temporary heat shields which could be staged onboard. The MV-22 provides a cheap method to reconstitute integrated ASW capability and provide survivable, high-speed warning and reconnaissance.

U.S. Naval Aviation must train for saturation raids, publicly. Saturation attacks are a lost art, and likely aviation forces have much to learn. Such attacks will require heavy coordination between aircraft and squadrons, flexing intellectual muscles left dormant since at least the end of the Cold War. Is a saturation attack down one bearing better, with inbound missiles exceeding the target’s sensor capacity in a single direction, or better from multiple vectors or compass points, overloading close-in defenses?  Such questions require at-sea testing. Additionally, such training is an important signal to U.S. maritime adversaries. The fact that U.S. naval aircraft are prepared to destroy high-end platforms, and have the capabilities to do so, emphasizes U.S. resolve in an era and in areas where such capability is in question.