The U.S. Army Is Now Under Attack By Enemy Drones
Yes, this day finally came.
The rationale for these potential upgrades and improvements is grounded in the recognition of a fast-changing global threat environment. Drone technology and drone-fired weapons, for instance, are proliferating around the globe at a rapid pace – therefore increasing the likelihood that potential adversaries will be able to surveil and attack forward operating bases with a wider range of air and ground weapons, including drones. Army base protections will need to identify a larger range of enemy attack weapons at further distances, requiring a broader base of defensive sensors and weaponry.
The US Army is accelerating a number of emerging counter-drone weapons in response to a warzone request from US Central Command - in light of a massive uptick in enemy small-drone attacks in Iraq and Afghanistan.
"Theater has asked for a solution, so we are looking at what we can apply as an interim solution," Col. John Lanier Ward, Director Army Rapid Equipping Force, told Scout Warrior in an interview.
New electronic warfare weapons, next-generation sensors and interceptors and cutting edge improved targeting technology for the .50-Cal machine gun to better enable it to target enemy drones with more precision and effectiveness.
Recommended: 5 Reasons No Nation Wants to Go to War with Israel
Ward said the Army is fast-tracking improved "slue-to-cue" technology, new sensors and emerging radar-based targeting technology to give the .50-Cal more precision accuracy.
"Targeting is getting better for the .50-Cal...everything from being able to detect, identify and engage precise targets such as enemy drones," Ward added.
Recommended: Could Iran Sink a U.S. Aircraft Carrier?
The fast-tracked counter-drone effort involves collaboration between the Army's Rapid Equipping Force and the service's program of record Forward Operating Base protective weapon -Counter-Rocket Artillery and Mortar (C-RAM).
CRAMis deployed at numerous Forward Operating Bases throughout Iraq and Afghanistan and the system has been credited with saving thousands of soldiers’ lives and is now being analyzed for upgrades and improvements.
Recommended: How North Korea Could Start the Unthinkable: War Between America and China
C-RAM uses sensors, radar and fire-control technology alongside a vehicle or ground-mounted 20mm Phalanx Close-in-Weapons-System able to fire 4,500 rounds per minute. The idea is to blanket an area with large numbers of small projectiles to intercept and destroy incoming artillery, rocket or mortar fire. As an area weapon, the Phalanx then fires thousands of projectiles in rapid succession to knock the threat out of the sky.
Engineers with Northrop Grumman integrate the Raytheon-built Phalanx into the C-RAM system; C-RAM was first developed and deployed to defend Navy ships at sea, however a fast-emerging need to protect soldiers on the ground in Iraq and Afghanistan inspired the Army to quickly adapt the technology for use on land; C-RAM has been operational on the ground since 2005.
Northrop developers are assessing new optical sensors, passive sensors and lasers to widen the target envelope for the system such that it can destroy enemy drones, helicopters, fixed-wing aircraft and cruise missiles. Engineers are also looking at new interceptor missiles to compliment the Phalanx, Northrop developers said.
The basis for integrating emerging technologies is grounded in a technical effort to construct the system with “open architecture” and workable interfaces able to accommodate new sensors and weapons. This hinges on the use of common IP protocol standards engineered to facilitate interoperability between emerging technologies and existing systems.
“Regardless of what is used to defeat the threat, we are looking at changing the sensors as technology evolves. You can also integrate new weapons as technology changes. In the future, we plan to have weapons talk to the interceptor,” said Sean Walsh, C-RAM project management, Northrop.
The rationale for these potential upgrades and improvements is grounded in the recognition of a fast-changing global threat environment. Drone technology and drone-fired weapons, for instance, are proliferating around the globe at a rapid pace – therefore increasing the likelihood that potential adversaries will be able to surveil and attack forward operating bases with a wider range of air and ground weapons, including drones. Army base protections will need to identify a larger range of enemy attack weapons at further distances, requiring a broader base of defensive sensors and weaponry.
Adding new sensors and weapons to CRAM could bring nearer term improvements by upgrading an existing system currently deployed, therefore circumventing multi-year developmental efforts necessary for many acquisition programs.
“There is some work being done to add missiles to the system through an enterprise approach,” Walsh said.
Lasers & Missile Interceptors
Northrop’s plan to develop ground-fired laser technology is consistent with the Army’s current strategy to deploy laser weapons to protect Forward Operating Bases by the early 2020s.
Adding lasers to the arsenal, integrated with sensors and fire-control radar, could massively help U.S. soldiers quickly destroy enemy threats by burning them out of the sky in seconds, Army leaders said.
Other interceptor weapons are now being developed for an emerging Army ground-based protective technology called Indirect Fire Protection Capability, or IFPC Increment 2. Through this program, the Army plans to fire lasers to protect forward bases by 2023, senior service leaders say.
Army weapons testers have already fired larger interceptors and destroyed drones with Hellfire missiles, AIM-9X Sidewinder weapons and an emerging kinetic energy interceptor called Miniature-Hit-to-Kill missile. The AIM-9X Sidewinder missile and the AGM-114 Hellfire missile are typically fired from the air. The AIM-9X is primarily and air-to-air weapon and the Hellfire is known for its air-to-ground attack ability.
Made by Lockheed Martin, the Miniature Hit-to-Kill interceptor is less than 2.5 feet in length and weighs about 5 pounds at launch. It is designed to be small in size while retaining the range and lethality desired in a counter-RAM solution. As a kinetic energy interceptor destroying targets through a high-speed collision without explosives, the weapon is able to greatly reduce collateral damage often caused by the blast-fragmentation from explosions.
Integrated Battle Command System
The Army has been testing many of these weapons using a Multi-Mission Launcher, or MML -- a truck-mounted weapon used as part of Integrated Fire Protection Capability - Inc. 2; the system uses a Northrop-developed command and control system called Integrated Air and Missile Defense Battle Command System, or IBCS.
IBCS uses a netted-group of integrated sensors and networking technologies to connect radar systems -- such as the Sentinel -- with fire-control for large interceptors such as Patriot Advanced Capability – 3 and Terminal High Altitude Area Defense.“If I lay down my sensors, I can see any kind of attack coming from those origins to take kill vectors as far forward as possible. If an enemy has a cruise missile, I want to kill them over the top of the enemy,” said Kenneth Todorov, Director, Global Air and Missile Defense, Northrop Grumman.
With IBCS, sensors can be strategically placed around a given threat area or battlespace to optimize their detection capacity; IBCS is evolving more toward what Pentagon strategists called “multi-domain” warfare, meaning sensors from different services can interoperate with one another and pass along target information.
While some of the networking mechanisms are still being refined and developed, the idea is to enable ship-based Aegis radar to work in tandem with Air Force fighter jets and ground-based Army missile systems.
Synergy between nodes, using radio, LINK 16 data networks and GPS can greatly expedite multi-service coordination by passing along fast-developing threat information. IBCS, an Army program of record, uses computer-generated digital mapping to present an integrated combat picture showing threat trajectories, sensors, weapons and intercepts, Todorov explained.
C-RAM Radar
C-RAM utilizes several kinds of radar, including an upgraded AN/TPQ-37 Firefinder Radar which, operating at a 90-degree angle, emits electromagnetic pings into surrounding areas as far as 50-kilometers away. The radar technology then analyzes the return signal to determine the shape, size and speed of an attacking enemy round on its upward trajectory before it reaches it full height.
The AN/TPQ-37, engineered by ThalesRaytheon, has been completely redesigned, incorporating 12 modern air-cooled power amplifier modules, a high-power RF combiner and fully automated transmitter control unit, according to ThalesRaytheon information.
“Radar Processor Upgrade The new radar processor combines the latest VME-64x architecture and full high/low temperature performance with AN/TPQ-37 Operational and Maintenance software programs. Containing only three circuit cards, maintenance and provisioning are simplified while overall reliability and power consumption is improved,” ThalesRaytheon data explains.
Army “Red-Teams” Forward Operating Bases
Army acquisition leaders and weapons developers are increasing their thinking about how future enemies might attack ---and looking for weaknesses and vulnerabilities in Forward Operating Bases.
The idea is to think like an enemy trying to defeat and/or out-maneuver U.S. Army weapons, vehicles, sensors and protective technologies to better determine how these systems might be vulnerable when employed, senior Army leaders said.
The Army is already conducting what it calls “Red Teaming” wherein groups of threat assessment experts explore the realm of potential enemy activity to include the types of weapons, tactics and strategies they might be expected to employ.