Is the US Navy Planning Big Changes to America's Future Aircraft Carriers?
Threats from carrier-killer missiles and other weapons of war could force some big changes.
Electronic warfare also figures prominently in the Navy’s plans for air warfare; the service is now finalizing the retirement of the EA-6B Prowler electronic warfare EA-6B Prowler electronic warfare aircraft in favor of the EA-18G aircraft, Shoemaker said.
“We’re totally transitioning now to the EA-18G Growler for electromagnetic spectrum dominance. This will give us the ability to protect our strike group and support our joint forces on the ground,” he said.
Also, the Growler will be receiving an electromagnetic weapon called the Next-Generation Jammer. This will greatly expand the electronic attack capability of the aircraft and, among other things, allow it to jam multiple frequencies at the same time.
The Navy is also moving from its E-2C Hawkeye airborne early warning aircraft to an upgraded E-2D variant with improved radar technology, Shoemaker explained.
“We've got two squadrons transitioned -- one just about to complete in Norfolk and the first is deployed right now on the Teddy Roosevelt (aircraft carrier). This (the E2-D) brings a new electronically scanned radar which can search and track targets and then command and control missions across the carrier strike group,” Shoemaker said.
Shoemaker also pointed to the Navy’s decision to have the V-22 Osprey tilt-rotor aircraft take over the carrier onboard delivery mission and transport equipment, personnel and logistical items to and from the carrier deck. The V-22 will be replacing the C-2 Greyhound aircraft, a twin-engine cargo aircraft which has been doing the mission for years.
Ford-Class Technologies:
The service specifically engineered Ford-class carriers with a host of next-generation technologies designed to address future threat environments. These include a larger flight deck able to increase the sortie-generation rate by 33-percent, an electromagnetic catapult to replace the current steam system and much greater levels of automation or computer controls throughout the ship, among other things.
The ship is also engineered to accommodate new sensors, software, weapons and combat systems as they emerge, Navy officials have said.
The ship’s larger deck space is, by design, intended to accommodate a potential increase in use of carrier-launched technologies such as unmanned aircraft systems in the future.
The USS Ford is built with four 26-megawatt generators, bringing a total of 104 megawatts to the ship. This helps support the ship's developing systems such as its Electro-Magnetic Aircraft Launch System, or EMALS, and provides power for future systems such as lasers and rail-guns, many Navy senior leaders have explained.
The USS Ford also needs sufficient electrical power to support its new electro-magnetic catapult, dual-band radar and Advanced Arresting Gear, among other electrical systems.
As technology evolves, laser weapons may eventually replace some of the missile systems on board aircraft carriers, Navy leaders have said. Laser weapons need about 300 kilowatts in order to generate power and fire from a ship.
Should they be employed, laser weapons could offer carriers a high-tech, lower cost offensive and defensive weapon aboard the ship able to potential incinerate incoming enemy missiles in the sky.
The Ford-class ships are engineered with a redesigned island, slightly larger deck space and new weapons elevators in order to achieve an increase in sortie-generation rate. The new platforms are built to launch more aircraft and more seamlessly support a high-op tempo.
The new weapons elevators allow for a much more efficient path to move and re-arm weapons systems for aircraft. The elevators can take weapons directly from their magazines to just below the flight deck, therefore greatly improving the sortie-generation rate by making it easier and faster to re-arm planes, service officials explained.
The next-generation technologies and increased automation on board the Ford-Class carriers are also designed to decrease the man-power needs or crew-size of the ship and, ultimately, save more than $4 billion over the life of the ships.
Kris Osborn became the Managing Editor of Scout Warrior in August of 2015. His role with Scout.com includes managing content on the Scout Warrior site and generating independently sourced original material. Scout Warrior is aimed at providing engaging, substantial military-specific content covering a range of key areas such as weapons, emerging or next-generation technologies and issues of relevance to the military. Just prior to coming to Scout Warrior, Osborn served as an Associate Editor at the Military.com. Osborn previously served at the Pentagon as a Highly Qualified Expert with the Office of the Assistant Secretary of the Army - Acquisition, Logistics & Technology. Osborn has also worked as an anchor and on-air military specialist at CNN and CNN Headline News. This story originally appeared in Scout Warrior.