The Arctic Is the Next Frontier for American Missile Defense

The Arctic Is the Next Frontier for American Missile Defense

Northrop Grumman is working on a “Next-Gen Polar” satellite system engineered to establish a continuous track across otherwise separated radar fields of regard, such as those covering the Arctic.

 

Here's What You Need to Remember: An ability to succeed in truly establishing a continuous “track” requires a multi-domain approach involving space, air, ground, and sea assets operating with an ability to instantly network sensitive and timely track data.

It almost seems so obvious it could easily be overlooked. ICBMs and even long-range ballistic missiles could be launched over the Arctic to attack enemies half a world away faster and more directly. The fastest and most direct route between North America and parts of Russia or even China might be straight over the Arctic, given the distance across the Pacific or Atlantic and European continent. 

 

Northrop Grumman is working on a development contract with the Pentagon on a “Next-Gen Polar” satellite system and payload technologies specifically engineered to establish a continuous track or threat trajectory across otherwise separated radar fields of regard, such as those covering the Arctic. 

In a multi-billion dollar deal awarded by the United States Space Force, Northrop Grumman will provide flight hardware, ground system development, and risk reduction functions for Phase 1 of what’s called the Next-Generation Overhead Persistent Infrared Polar (OPIR) program. The deal covers the design and development of the first two polar-orbiting space vehicles, according to a Northrop Grumman statement.  

“We are working with the MDA (Missile Defense Agency) to define a spiral approach to do a prototype constellation that will involve a handful of satellites using optical cross-links,” Mike Ciffone, director, Strategy, Capture & Operations, OPIR & Geospatial Systems, Northrop Grumman, told reports at the Space and Missile Defense Symposium. 

In a related effort, Northrop Grumman is also working on payload technologies to support Lockheed Martin’s now in development Overhead Persistent Infrared Next-Gen GEO program

Success in developing a track relies upon both establishing a continued target trajectory and an ability to share, network, or transmit the track information from one satellite to another and from one satellite to ground-based command and control centers. Optical cross-links, which can use laser connectivity and fiber optics to transmit high-value data at the speed of light between satellites to enable a kind of “mesh” networking between nodes in space designed to bridge an otherwise disruptive “gap” in tracking a threat. Naturally, this is something that becomes increasingly challenging when trying to defend against hypersonic missiles traveling at more than five times the speed of sound. Hypersonic weapons can of course transit from one radar aperture to another at unprecedented speeds, making it almost impossible for geographically segmented radar systems to establish a continued track on a target. 

Hypersonic weapons “could reach targets that are 1000km away within minutes,” according to a 2019 paper from a UK-based think tank called Article36, titled “Convention on Certain Conventional Weapons.”

Significantly, the impact of this kind of threat seems to be anticipated in a 2017 article in AIP Conference Proceedings which cites a need for the U.S. military to re-craft its command and control doctrine to better track hypersonic threats.

“While operational doctrine and command structures adequately address traditional atmospheric air attack or exoatmospheric ballistic missile attack, existing doctrine and organizational structure may not be adequate to address the cross-domain threat posed by hypersonics,” the paper states.

The Next-Gen GEO, which is also part of OPIR, will operate above the mid-latitudes of the earth but cannot fully or easily reach polar elliptical orbit, whereas the Polar system will “dwell over the Northern Hemisphere” to catch missiles as they traverse between continents. For example, a polar satellite could, if sufficiently networked to securely transmit time-sensitive information across multiple nodes in real-time, alert ground control commanders to a submarine-launched long-range ballistic missile early in its flight trajectory.  This becomes much more difficult in the case of a moving target, Ciffone said, because maneuvering missiles might not follow a predictable “parabola-like” trajectory making it more challenging to discern or anticipate the weapon's speed and expected point of impact. 

The challenge of truly being able to “see” things faster and more completely anywhere in the globe continues to grow more pressing as potential enemies continue to advance new technologies designed to prevent detection or intercept such as electronic warfare countermeasures to jam radar, decoys, and coordinated multiple attacks. This scenario was anticipated in a document called “Army Air & Missile Defense 2018 Vision,” which specifies some of the more difficult challenges presented by enemy weapons. For instance, regarding ballistic missile threats, the Army Vision essay explains that advanced weapons are now engineered with “countermeasures, maneuverable re-entry vehicles, multiple independent reentry vehicles, hypersonic/supersonic glide vehicles, and electronic attack.”

It seems almost too self-evident to mention that an ability to succeed in truly establishing a continuous “track” requires a multi-domain approach involving space, air, ground, and sea assets operating with an ability to instantly network sensitive and timely track data. Maj. Gen. Robert Rasch, Program Executive Officer, Missiles and Space, said the MDA has the lead when it comes to hypersonics missile defense but that air-ground synergy would be crucial to success. 

“Army will have a role, as there is not a solution box that does not require joint sensing. It will take combined sensing to track a hypersonic target over time,” Rasch said at the symposium. 

Kris Osborn is the defense editor for the National Interest. Osborn previously served at the Pentagon as a Highly Qualified Expert with the Office of the Assistant Secretary of the Army—Acquisition, Logistics & Technology. Osborn has also worked as an anchor and on-air military specialist at national TV networks. He has appeared as a guest military expert on Fox News, MSNBC, The Military Channel, and The History Channel. He also has a Master’s Degree in Comparative Literature from Columbia University. 

This article is being reprinted due to reader interest.

Image: Reuters.