Biden Isn't Ready: China is Coming For American Submarines
Here's a glimpse of yet more coming attractions from the Chinese Navy in terms of anti-submarine warfare.
Here's What You Need to Remember: A new threat to the dominance of the U.S. submarine force in the Western Pacific lies over the horizon. A series of recent articles published in China implies that the PLA Navy is hard at work on developing unmanned aerial vehicles (UAVs) that will take up the ASW mission. That could eventually pose a major problem for the undersea forces of the United States and also for the forces of its allies.
China has been steadily improving its anti-submarine warfare (ASW) capabilities to cope with a perceived, major asymmetry in undersea warfare capabilities. Additionally, when Beijing began filling out its navy with major surface combatants, including aircraft carriers, cruisers, and now large amphibious attack ships, there has been a rather visible and understandable uptick in Chinese attempts to protect these new investments from submarine attack.
Some of these developments in Chinese ASW over the last decade have included building a formidable force of light frigates that are equipped with towed sonar arrays, fielding a vertically launched “rocket torpedo” as a standard weapon in its fleet, deploying a new maritime patrol aircraft (MPA) that is optimized for ASW and developing ocean bottom sensor networks in and around its key naval bases. Some coming attractions in this area will include a new generation of Chinese ASW helicopters (both Z-18 and Z-20), as well as a system of unmanned undersea vehicles (UUVs) that will perform various missions, including especially surveillance and laying sea-mines, at least at the outset.
Now, a new threat to the dominance of the U.S. submarine force in the Western Pacific lies over the horizon. A series of recent articles published in China implies that the PLA Navy is hard at work on developing unmanned aerial vehicles (UAVs) that will take up the ASW mission. That could eventually pose a major problem for the undersea forces of the United States and also for the forces of its allies.
One article, published in the Chinese journal Fire Control & Command [火力与指挥控制] in mid-July, is a collaborative research project between the Naval Command College in Nanjing and the Naval Aeronautical University in Yantai. The research focuses on the potential for UAVs to support an MPA in the “cooperative use of sonobuoys for the purposes of conducting a submarine search.” The article explains that sonobuoys are one of the main tools for hunting submarines, especially over a large sea area. These authors project that “Given the wide array of possibilities to employ UAVs, it’s quite possible that they will play a large role in the future of anti-submarine warfare [随着无人机的广泛运用在未来反潜作战中很可能发挥重要角色].”
This analysis begins by discussing various advantages and disadvantages of manned MPAs for ASW, such as the U.S. Navy’s vaunted P-8 Poseidon. Not only can that aircraft carry 120 sonobuoys, but it is capable of monitoring 60 of these buoys simultaneously, according to this Chinese rendering. Such aircraft are capable of “independent” missions against submarines, as they can conduct search, track, and attack functions. However, there is a fly in the ointment, of course, and this analysis emphasizes that such lumbering aircraft themselves have minimal self-defense capability and thus “may very easily become targets of attack [很容易被作为攻击目标]” by enemy interceptors. Another problem is that the length of the missions can be exceedingly taxing for the crews, so that the overall submarine search efficiency of the aircraft may decrease.
The argument is made in this Chinese analysis that unmanned aircraft can be of considerable assistance in such circumstances. It is said that UAVs frequently fly for more than forty hours but are capable of flights that last over days or even weeks. While generally not fast-moving, they are still considerably faster than surface ships that are also employed for the ASW mission. It is projected, moreover, that they may sometimes be able to fly over air defenses. But the biggest selling point for UAVs in this role is that they are so much cheaper than both submarine-hunting large MPAs, and quite obviously also their quarry, the submarines. In other words, such economical approaches to the undersea rivalry in the Western Pacific could put Beijing on the right end of a “cost-imposition” strategy. This Chinese analysis, moreover, implies that unmanned aircraft need not accomplish all aspects of the ASW mission. They could play the reasonably simple role of information relay platforms. They could also help to reduce the complexity of the daunting tasks that currently confront MPA crews. Of course, they could also take greater risks by entering “situations of contested airspace [敌空中威胁情况].” Lower costs, naturally enough, also mean that many airframes, coordinating together, could be deployed for any given search operation. Mathematical modeling of ASW operations in this piece yields the conclusion that UAVs do significantly increase the efficiency of submarine hunting.
A second article, from a late 2018 edition of Chinese Journal of Ship Research [中国舰船研究], endeavors to explore the “search/attack submarine integration [搜攻潜一体化]” functions of a fixed-wing UAV for ASW by studying the issue of optimizing payloads. This author, from the Jiangsu Automation Research Institute, asserts that “all navies are reforming ASW models.” He contends that there is an “urgent need for greater range, larger search areas, longer search periods, as well as cheaper methods of sensing, detection, tracking, and prosecuting submarines.” The paper discusses some foreign designs, including the U.S military’s MQ-9 UAV.
Owing mostly to the cost issue, this analysis also holds that UAVs for ASW have “obvious advantages” over manned aircraft. Interestingly, this Chinese study asserts that “weaponization is the basic trend for fixed-wing unmanned ASW aircraft [武器化是固定翼反潜无人机的基本特点].” But the most remarkable part of this particular discussion is the recognition that these UAVs might well operate from Chinese aircraft carriers. That is a rather bold call given that China has yet to demonstrate success in operating UAVs from aircraft carriers, but it does neatly illustrate Beijing’s priority on protecting its new capital ships, as noted in this paper’s introduction. Reviewing sample flight profiles, this analysis sees an ASW UAV that is capable of a patrol radius of six hundred kilometers for its land-based variant and perhaps three hundred kilometers for its carrier-based variant.
The above articles offer a glimpse of yet more coming attractions from the Chinese Navy. Indeed, the naval air arm of the PLA Navy is now starting to make rapid progress in line with its subsurface and surface forces. This news is quite disturbing as it fits a developing pattern of Beijing employing its new prowess in artificial intelligence to solve difficult battlefield dilemmas. What’s still more troubling is that if Chinese missiles and aircraft succeed in destroying U.S. and allied airbases in the Western Pacific during the initial phase of any military contingency, whether over Taiwan or the South China Sea, that might well leave myriad Chinese drone aircraft the freedom to roam and aggressively stalk previously nearly invulnerable American submarines.
Lyle J. Goldstein is Research Professor in the China Maritime Studies Institute (CMSI) at the United States Naval War College in Newport, RI. In addition to Chinese, he also speaks Russian and he is also an affiliate of the new Russia Maritime Studies Institute (RMSI) at Naval War College. You can reach him at [email protected]. The opinions in his columns are entirely his own and do not reflect the official assessments of the U.S. Navy or any other agency of the U.S. government.
Image: Flickr