The Buzz

The S-3 Viking: The Submarine Hunter Russia Feared (That Retired Way Too Early)

Eight years ago the U.S. Navy retired:

A) Its only dedicated carrier-based tanker;

B) its last dedicated carrier-based antisubmarine airplane;

C) a carrier-based plane with more than twice the range of its current jets;

D) all of the above.

With a maximum speed of only five hundred miles per hour—many airliners fly faster—the S-3 Viking wasn’t about to be the subject of any movies starring Tom Cruise. However, the long-legged jets proved extremely useful in a very wide variety of roles, whether as an electronic spy, submarine hunter, aerial tanker, cargo plane or even an attack jet. And many of those roles have not been satisfactorily replaced since.

The S-3 Viking was first conceived in 1960s to serve as a next-generation submarine hunter. In the event of a war between NATO and the Warsaw Pact, the U.S. Navy’s most important mission would have been combating the Soviet Union’s large submarine fleet. If the war went nuclear, Soviet ballistic-missile submarines could have wreaked terrible devastation on U.S. cities. And if the conflict remained conventional, then attack submarines would have done their best to sink convoys of American troop ships reinforcing NATO forces in Europe.

During World War II, carrier-based aircraft such as the TBF Avenger torpedo bomber played a major role in sinking Axis submarines. However, the diesel-electric submarines of that era needed to surface frequently to recharge their batteries, exposing themselves to air attack. By the late 1950s, the Soviet Union had begun to deploy its first nuclear submarines, which could remain submerged for weeks, and later months, at a time, and the current S-2 submarine hunters were no adequate for chasing them down.

Lockheed partnered with LTV—which had experience developing the carrier-based A-7 and F-8 jets—in producing a new antisubmarine plane with a sophisticated new design. The resulting twin turbofan jet seated a crew of four in a two-by-two configuration, including a pilot and copilot, a sensor operator and tactical coordinator. The long-legged plane had a range of 2,300 miles and came with an aerial refueling probe that could extend that even further—leading on one occasion to an S-3 flying thirteen hours from a carrier in the Mediterranean to Washington, DC, carrying a captured terrorist hijacker.

The plane’s twin TF-34-400 turbofans—an engine related to that on the A-10 attack plane—were infamous for their peculiar vacuum-cleaner-like whine, leading to the plane’s nickname of “Hoover,” which you can hear for yourself in the video below.

 

The Viking’s crew had access to a diverse array of sensors, starting with a APS-116 sea-search radar that could switch between a high-resolution mode for detecting submarine periscopes and a long-range mode that could extend up to 150 miles. A meters-long Magnetic Anomaly Detector boom could extend from the tail to scan the water for the metal in submarine hulls. The Viking also carried up to sixty sonar buoys to aid in tracking submarines, an infrared sensor and an ALR-47 ESM sensor that could track electromagnetic emitters. Most impressively, the Viking was one of the first U.S. planes to implement a degree of data fusion between the various sensors.

The Viking’s internal weapons bay and external wing pylons could carry a diverse array of weapons including homing torpedoes, CAPTOR antiship mines, Harpoon antiship missiles, unguided bombs, rocket pods and even nuclear gravity bombs.

The S-3A entered operational service in 1974 with VS-41, and soon each carrier had its own squadron of the antisubmarine planes. Though the U.S. Navy fortunately did not engage in any actual antisubmarine warfare in the subsequent decades, the records of S-3 squadrons suggest they might have proved pretty effective at their job. For example, in 1984 a Viking was the first NATO platform to detect a new class of Russian submarines, and in 1986, S-3s of VS-28 flying from the USS Independence detected submarines from eight different countries while on a cruise in the Mediterranean. Around that time the Navy began upgrading over a hundred Vikings to the S-3B model, which came with new APS-137 synthetic aperture radars with high enough resolution to identify ships by class.

Meanwhile, the U.S. Navy began assigning additional roles to the S-3 Viking. For example, taking advantage of the type’s large hull, six Vikings were modified into US-3A cargo planes modified to serve as special high-priority Carrier On-Deck Delivery planes, capable of carrying six passengers and up to four thousand pounds of cargo.

The Viking also took on a new role as an electronic spy, particularly with the sixteen modified ES-3 Sea Shadow aircraft that entered service in 1993. These signals-intelligence aircraft were capable of spying on enemy communications and determining the position of hostile transmitters so that friendly forces could target them. The Sea Shadows had a brief but eventful operational career, helping identify targets during the air wars over former Yugoslavia and enforcing the no-fly zone over Iraq before being retired from service in 1998 in favor of a replacement program that never materialized. There were also a half-dozen unique variants of the Viking, including “Aladdin” and “Beartrap” aircraft, engaged in intelligence missions that remain classified to this day.

Pages