Five Futuristic Weapons That Could Change Warfare

Revolutions in waiting?

Editor’s Note: Please also see our previous defense lists including the Top Five Naval Battles of All Time, Top Five Fighter Aircraft of All Time, Five Worst Fighter Aircraft of All Time and the Five Best Submarines of All Time.

Predicting which five weapons will have the greatest impact on the future of combat is a problematic endeavor, as the nature of warfare itself is fluid and constantly changing. A system that could be a game-changer in a major confrontation between two conventional forces—say, China and the United States—could be of little utility in an asymmetrical scenario pitting forces in an urban theater (e.g., Israeli forces confronting Palestinian guerrillas in Gaza or Lebanese Hezbollah in the suburbs of Beirut).

The world’s best fifth-generation stealth combat aircraft might be a game-changer in some contexts, but its tremendous speed and inability to linger makes it unsuitable to detect and target small units of freedom fighters operating in a city, not to mention that using such platforms to kill a few irregular soldiers carrying AK-47s is hardly cost effective. Special forces equipped with hyperstealth armor and light assault rifles firing “intelligent” small-caliber ammunition would be much more effective, and presumably much cheaper.

Another challenging aspect is choosing how we define revolution in the context of weapons development. Do we quantify impact using the yardstick of destructiveness and casualty rates alone? Or conversely, by a weapon’s ability to achieve a belligerent’s objectives while minimizing the cost in human lives? What of a “weapon” that obviates kinetic warfare altogether, perhaps by preemptively disabling an opponent’s ability to conduct military operations?

Keeping in mind the scenario-contingent nature of warfare, we can nevertheless try to establish a list of weapons systems, most of which are already in the development stage, that will, if only for a brief instant, change the nature of warfare. By trying to strike a balance between conventional warfare and irregular operations, our list is inherently incomplete but shows trends in the forms of warfare that are likely to affect our world for decades to come.

5. ‘Hyper Stealth’ or ‘Quantum Stealth’

Using naturally occurring metamaterials, scientists have been designing lightwave-bending materials that can greatly reduce the thermal and visible signatures of a target. The science behind it is relatively straightforward, though skeptics remain unconvinced and say they will believe it when they don’t see it: The “adaptive camouflage” renders what lies behind the object wearing the material by bending the light around it.

The military implications of such developments are self-evident, as “invisibility cloaks” would make it possible for fighters—from ordinary soldiers to special forces—to operate in enemy territory undetected, or at least buy them enough time to take the initiative. Such capabilities would reduce the risk of casualties during military operations while increasing the ability to launch surgical and surprise attacks against an opponent, or conduct sabotage and assassination.

A Canadian firm has reportedly demonstrated the material to two command groups in the U.S. military and two groups in the Canadian military, as well as to federal counterterrorism teams.

Of course, this technology would also have a serious impact on operations should it become available to nonstate actors like guerrilla forces and terrorist groups.

4. Electromagnetic Rail Guns

EM rail gun launchers use a magnetic field rather than chemical propellants (e.g., gunpowder or fuel) to thrust a projectile at long range and at velocities of 4,500 mph to 5,600 mph. Technology under development has demonstrated the ability to propel a projectile at a distance of 100 nautical miles using 32 megajoules.

The extended velocity and range of EM rail guns provides several benefits both in offensive and defensive terms, from precision strikes that can counter even the most advanced area defense systems to air defense against incoming targets. Another advantage of this technology is that it eliminates the need to store the hazardous high explosives and flammable materials necessary to launch conventional projectiles.

A naval EM rail gun system has been in development since 2005 by the U.S. Office of Naval Research. The current phase of the project, initiated in 2012, seeks to demonstrate sustained fire, or “rep-rate” capability.

The U.S. Navy hopes to eventually extend the range of EM rail guns to 200 nautical miles using 64 mega-joules, but as a single shot would require a stunning 6 million amps (bigger than the currents that cause the auroras), it’ll be years before scientists find a way to develop capacitors that can generate such energy, or gun materials that will not be shredded to pieces at every shot.

Not to be bested, the U.S. Army has been developing its own version of the EM rail gun. China is also rumored to be working on its own version, with satellite imagery emerging in late 2010 suggesting ongoing tests at an armor and artillery range near Baotou, in the Inner Mongolia Autonomous Region.

3. Space Weapons

Pages