Beyond the Ohio-Class: Inside America's Next-Generation Missile Submarine

The Ohio Replacement Program subs, or ORP, will be larger than the Ohio-class because of the enhanced survivability measures integrated onboard the submarines.

General Dynamics' storied Electric Boat division is set to deliver its detailed design proposal for the new Ohio Replacement Program (ORP) ballistic missile submarine to the U.S. Navy this Friday. That will kick off a series of events, which will culminate with Electric Boat signing a contract to design and build the new ‘boomer’ in the fall after a Milestone B review in August. That’s assuming the Congress manages to pass the fiscal year (FY) 2017 budget.

With construction of the new ballistic missile submarine set to begin in fiscal year 2021, the goal is to deliver the first boat in time to its conduct its first deterrence patrol in October 2030. Unlike with the Virginia-class attack submarine, Electric Boat will be the sole prime contractor and will be responsible for delivering all twelve ORP boats to the Navy. However, while Electric Boat will be responsible for eighty percent of the work on the ORP, Huntington Ingalls Newport News—the only other shipyard capable of building a nuclear submarine—is heavily involved in the design and build phase. Newport News has a total responsibility for about twenty percent of the boat's design and construction—about 300 of the company’s engineers are working with Electric Boat to design the new submarine. Dividing up the work in this manner will help to preserve the nation’s critical nuclear submarine engineering and manufacturing skills.

The Navy expects the new arrangement to drive down the learning curve for the new boomer and reduce costs by having only one prime contractor. “The decision here was to facilitize Electric Boat and have EB do all twelve deliveries of the Ohio Replacement, put down one learning curve over twelve ships,” Capt. David Goggins, Naval Sea Systems Command program manager for the ORP, told an audience at the Navy League’s Sea, Air and Space symposium on May 17.

In an attempt to minimize costs, the Navy drew upon as much technology from the Virginia-class as possible. However, there are some major differences between the two designs—especially towards the stern of the vessel. The ORP is designed to have greatly improved survivability. The Navy emphasized stealth and survivability because of the boat’s critical nuclear deterrence mission—the ORP has to be survivable through 2080 in order to guarantee America’s nuclear deterrence, Goggins said.

Even though the detail design phase has yet to start, work on many critical aspects of the program have already started. Electric Boat will complete the submarine’s common missile compartment (CMC) arrangements before the end of this year. “We’ll start our prototyping of the missile compartment this year, this summer,” Goggins said.

The idea behind the prototyping is to reduce risks associated with the new missile compartment—which should also help to reduce manufacturing costs. Moreover, the British—who will also use the same missile compartment design—are expected to start construction of their new Successor-class ballistic missile submarines in the coming months. That means that the Royal Navy needs to have the CMC design completed and proven before they install those modules onboard the first of their new boomers.  “We’ll start prototype construction this year,” said Will Lennon, Electric Boat’s vice president of engineering and design programs in an interview with The National Interest. “Because the design of the common missile compartment supports the United Kingdom and the U.S. designs—the United Kingdom is going to start their construction as soon as they go through their main-gate which is scheduled for later this year. So they’ll start construction either later this year or early next year.”  

The design and construction of the CMC is one of the four major technical innovations onboard the ORP. When the Ohio-class was designed and built, empty missile tubes were simply welded into the hull. Workers would insert the electronics and other hardware necessary to make those tubes work later in the construction phase through various hatches and other openings. “Very inefficient,” Lennon said.

The OPR uses a completely new method. Instead of inserting one tube at a time into the hull for later outfitting, the CMC is built as part of a section with four tubes built-in—called a Quad-Pack. The four tubes are manufactured and fully outfitted before being combined into a single module for installation. That module is then inserted into the hull as a unit. The ORP will be fitted with four Quad-Packs to carry a total of sixteen submarine launched ballistic missiles—but the smaller British Successor-class would only be fitted with three such units for a total of twelve missiles. Theoretically, if the ORP’s other systems could support the additional weight and power requirements, adding more missiles to the design would simply mean adding additional Quad-Packs. The tubes are the same 87-inch diameter vessels as the current Trident II D5 launchers on the Ohio-class, but are a foot longer—leaving some margin for a future missile design.

Though the British are involved in the program, they are not directly assisting in the design of the CMC. “They’re not doing the design, but they’re involved in what we call design-build,” Lennon said. “They have their people looking at the design, making sure it is producible. They do have some unique systems that the U.S. doesn’t have that we are working together to make sure that they fit into the common missile compartment space.”

Pages